Titre de la thèse: Time-reversal-based microwave imaging of disorganized periodic structures
Résumé de la thèse: My PhD work is about electromagnetic modeling and imaging of disorganized periodic structures. A certain pattern in an elementary subdivision (a “cell”) is repeated in the other cells of the structure into certain directions of space. This repetition is disorganized by a change of material properties and/or geometries of the constitutive parts, within one or more cells. At first level of modeling, these panels are a succession of planar plates one over the other. Each consists of a regular linear arrangement of long cylinders with same finite circular sections, all orientated into the same direction: we call them “fibers”, each cylinder resulting from the assumption of a bundle of small-size fibers. The constitutive material of the fibers differs from the embedding material (matrix) that they reinforce. Each plate is made of fibers with different axes for sturdiness. There are few or many plates, with repetition of a small stack of plates. For conductive panels (carbon-based), imaging is MHz; for lossless or weakly lossy panels (glassbased), imaging is microwave (a few tens GHz, possibly more). There might be missing/displaced cylinders inside a plate, with consequent changes in possibly several cells, adjacent or not. Local damages might occur also, leading to changes in shape or electromagnetic properties of one or more cylinders in one or more cells in one or more plates. Randomness in distribution of the inclusions might account for uncertainties of positioning with respect to assumed geometries. Properly illuminating the structures and collecting the resulting fields (in the near-field hopefully, possibly in the far-field) should allow their imaging and concur to their diagnostics. So, a periodic structure under interrogation is disorganized. One wishes to successfully image the structure while taking care at best of prior information on periodicity and disorganization, on sensing systems, and obviously of needs and limitations of the testing. Co-operation with UESTC Chengdu is also emphasized. Y Zhong at IHPC A*STAR Singapore is closely involved in the PhD supervision.