"Séminaire d'Automatique du plateau de Saclay" of iCODE

Seminar on October 25, 2019, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Antoine Girard & Sajad Naderi

10:00-11:00 Antoine Girard (L2S, Gif-Sur-Yvette, France)

Title: A Symbolic Control Approach to the Programming of Cyber-Physical Systems

Abstract: Autonomous vehicles, intelligent buildings or robots promise to transform the everyday life of our society in all its dimensions (transport, housing, industry, health, assistance to the elderly ...). These systems are examples of cyber-physical systems (CPS) resulting from the integration of computer components and physical processes. The development of these systems is often complex (due to cyber-physical interactions) and with critical safety requirements.
In this talk, I will present the first steps towards developing a framework for CPS programming that will enable fast and safe development of their functionality through a high-level programming language. The originality of the approach is to consider that programs are not intended to be executed on the digital platform made up of computer components, but on the cyber-physical platform, which additionally includes the physical part of the system. Thus, high-level programs do not specify the behavior of the computer components but directly that of the cyber-physical system. Then, an automatic synthesis tool uses a model of the physical process to generate low-level control algorithms that enforce the specified behavior.
I will introduce a high-level language for CPS directly inspired by the formalism of hybrid automata. Following the paradigm of 'correct by construction synthesis', low-level control algorithms are synthesized by symbolic control techniques. The key concept of symbolic control is that of the symbolic model, which is a dynamic finite state system, obtained by abstracting physical trajectories on a finite set of symbols. When symbolic and physical dynamics are formally linked by a behavioral relation (e.g., simulation or bisimulation), controllers synthesized for the symbolic model using discrete synthesis techniques can be refined to controllers certified for the physical system. I will provide illustrating examples from the domain of autonomous vehicles.

Biography: Antoine Girard is a senior researcher at CNRS and a member of the Laboratory of Signals and Systems. He received the Ph.D. degree in applied mathematics from Grenoble Institute of Technology, in 2004. From 2004 to 2006, he held postdoctoral positions at University of Pennsylvania and Université Grenoble-Alpes. From 2006 to 2015, he was an Assistant/Associate Professor at the Université Grenoble-Alpes. His main research interests deal with analysis and control of hybrid systems with an emphasis on computational approaches, formal methods and applications to cyber-physical systems. Antoine Girard received the George S. Axelby Outstanding Paper Award from the IEEE Control Systems Society in 2009. In 2014, he was awarded CNRS Bronze Medal. In 2015, he was appointed as a junior member of the Institut Universitaire de France (IUF). In 2016, he was awarded an ERC Consolidator Grant. In 2018, he received the first Test of Time Award from the International Conference on Hybrid Systems: Computation and Control and the European Control Award.

11:00-12:00 Sajad Naderi (Eindhoven University of Technology, The Netherlands)

Title: Model order reduction for linear time delay systems based on energy functionals

Abstract: In this talk, I first present a model order reduction approach for asymptotically stable linear time systems with point-wise delays. This approach, which can be regarded as an extension of existing balanced model order reduction techniques for linear delay-free systems, is based on energy functionals that characterize observability and controllability properties of time delay system. This type of approach provides an a priori bound on the reduction error. Moreover, the resulting reduced model is an asymptotically stable time delay system with the same delay-structure as the original model. In the second part of the presentation, I introduce an extended model order reduction technique for time delay systems. This extension is beneficial when the preservation of physical interconnection structures or uncertainties is desired.

Biography: Sajad Naderi received his MSc in control systems from the school of electrical and computer engineering at the University of Tehran, Iran. For his MSc thesis, he worked on the design and implementation of nonlinear adaptive controllers for the speed control of PMSM drives. He is currently pursuing a PhD degree within the dynamics and control group of the mechanical engineering department at Eindhoven University of Technology, The Netherlands. His PhD research focuses on model order reduction of infinite-dimensional systems, with application to managed pressure drilling automation. In the scope of this industrial project, he has spent 1.5 years of his PhD at the Norwegian company Kelda Drilling Controls in Porsgrunn, Norway.

«Trajectoires optimales et commande prédictive d'un quadricoptère pour la réalisation de plans de vol cinématographiques » « Optimal trajectory planning and predictive control for cinematographic flight plans with quadrotors »

Thesis defended on October 18, 2019, 10:00 AM at

  CentraleSupélec (Gif-sur-Yvette) - Bâtiment Bouygues - Amphi SC.071


Membres du jury:

Mme Cristina STOICA MANIU            L2S/CentraleSupélec Directrice de thèse
M. Mathieu BABEL  Parrot Drones Co-encadrant
Mme Sihem TEBBANI L2S/CentraleSupélec Co-encadrante
M. Nicolas MARTIN Parrot Drones Co-encadrant - invité
M. Sylvain BERTRAND ONERA Examinateur
M. Pedro CASTILLO-GARCIA Université de Technologie de Compiègne Examinateur
M. Nicolas PETIT  Mines ParisTech Rapporteur
M. Didier THEILLIOL Université de Lorraine Rapporteur


Résumé: Cette thèse s'intéresse à la réalisation autonome de plans de vol cinématographiques par un quadrotor équipé d'une caméra. Ces plans de vol consistent en une série de points de passage à rejoindre successivement, en adoptant diverses méthodes de prise de vue et en respectant des références de vitesse ainsi que des couloirs de vols. Une étude approfondie de la dynamique du quadrotor est tout d'abord proposée, et utilisée pour construire un modèle linéarisé du drone autour de l'équilibre de vol stationnaire. L'analyse de ce modèle linéaire permet de mettre en évidence l'impact de l'inertie des rotors du drone dans sa dynamique, notamment l'apparition d'un comportement à non minimum de phase en roulis ou tangage, lorsque les moteurs sont inclinés. Dans un second temps, deux algorithmes de génération de trajectoires lisses, faisables et adaptées à la cinématographie sont proposés. La faisabilité de la trajectoire est garantie par le respect de contraintes sur ses dérivées temporelles, adaptées pour la cinématographie et obtenues grâce à l'étude du modèle non linéaire du drone. Le premier repose sur une optimisation bi-niveaux d'une trajectoire polynomiale par morceaux, dans le but de trouver la plus rapide des trajectoires à minimum de jerk permettant d'accomplir la mission. Le second algorithme consiste en la génération de trajectoires B-spline non-uniformes à durée minimale. Pour les deux solutions, une étude de l’initialisation du problème d'optimisation est présentée, de même qu'une analyse de leurs avantages et limitations. Pour ce faire, elles sont notamment confrontées à des simulations et vols extérieurs. Enfin, une loi de commande prédictive est proposée pour asservir les mouvements de la caméra embarquée de manière douce mais précise.

Abstract: This thesis deals with the autonomous performance of cinematographic flight plans with camera equipped quadrotors. These flight plans consists in a series of waypoints to join while adopting various camera behaviors, along with speed references and flight corridors. First, an in depth study of the nonlinear dynamics of the drone is proposed, which is then used to derive a linear model of the system near the hovering equilibrium. An analysis of this linear model allows us to emphasize the impact of the inertia of the propellers when the latter are tilted, such as the apparition of a non minimum phase behavior of the pitch or dynamics. Then, two algorithms are proposed to generate smooth and feasible trajectories suited for cinematography. The feasibility of the trajectory is ensured by constraints on its time derivatives, suited for cinematography and obtained with the use of the nonlinear model of the drone. The first algorithm proposed in this work is based on a bi-level optimization of a piecewise polynomial trajectory and try to find the fastest feasible minimum jerk trajectory to perform the flight plan. The second algorithm consists in the generation of feasible, minimum time, non uniform B-spline. For both solutions, a study of the initialization of the optimization problem is proposed, as well as a discussion about their advantages and limitations. To this aim, they are notably confronted to simulations and outdoor flight experiments. Finally, a predictive control law is propose to smoothly but accurately control the on-board camera.





Séminaire d'Automatique du plateau de Saclay

Seminar on October 17, 2019, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Islam Boussaada & Ludovic Sacchelli

10:00-11:00 Islam Boussaada (Inria Saclay, Equipe DISCO & L2S, Gif-Sur-Yvette)

Title: Coalescence and Splitting Mechanisms of Spectral Values and their Effect on Stability: Towards a New Framework for Reduced Complexity Pole-placement Design for Time-Delay Systems

Abstract: For linear delay-differential equations, a question of ongoing interest is to determine conditions on the equation parameters that guarantee exponential stability and stabilization of solutions. This talk starts by a review of an old design method for time-delay systems called finite pole-placement. Its advantages and limitations shall be stressed. Next, some recent results showing a link between the stable manifold and the manifold corresponding to a given multiplicity of a spectral value shall be presented, hence enabling a spectral abscissa assignment. After a motivation of the tracking of multiple spectral values for analysis/control perspectives, some existing links between Birkhoff’s interpolation problem and a result due to Pólya and Szegö on the number of quasipolynomial's roots in a horizontal strip shall be revisited. Later, hints of an analytic proof of the dominancy of the quasipolynomial's root will be presented, setting up a reduced-complexity delayed stabilizing design. Sensitivity of the control design with respect to the parameters' variation will be discussed. To overcome the sensitivity of multiple roots, an extension of the approach to real distinct pole assignment shall be presented. Finally, various reduced order examples will illustrate the applicative perspectives of the proposed control approach.

Biography: Islam Boussaada received his Master in Mathematics from University Tunis II, and an M.Sc. degree in Pure Mathematics from University Paris 7 in 2004. In December 2008, he defended his Ph.D. degree in Mathematics from University of Rouen Normandy. In June 2016, he received his HDR degree (French Habilitation) in Physics from University Paris Saclay-University Paris Sud. In 2010, IB was appointed for two years as a post-doctoral fellow in the control of time-delay systems at L2S, Supelec-CNRS-University Paris Sud. Since 2012, he has been an associate professor at IPSA and an associate researcher at MODESTY Team of L2S. Since September 2017, IB is appointed permanent researcher at DISCO Team and full professor at IPSA where he headed the Aeronautical and Aerospace Systems department from September 2017 till May 2019.
Since September 2018 untill August 2020, IB is a researcher in temporary secondment at Inria Saclay-DISCO Team. His research interests belong to the qualitative theory of dynamical systems and its application in control problems. It includes stability analysis and stabilization of linear/nonlinear dynamical systems, analysis of parametric systems, analysis of delay induced dynamics, nonhyperbolic dynamics, analysis of algebraic dierential systems, control of active vibrations, dynamics of biochemical networks. IB is co-author of a monograph and co-editor of a contributed book, both published in Springer series, as well as co-author of more than 60 peer-reviewed publications. He co-organized the 4th GDRI DelSys's Workshop on Observing and Controlling Complex Dynamical Systems (November 2015), as well as the 1st GDRI Spa-Disco's workshop on Delays and Constraints in Distributed Parameters Systems (November 2017), both funded by CNRS and held at CentraleSupelec (Gif sur Yvette). At the occasion of the 20th World Congress of the International Federation of Automatic Control (IFAC) (Toulouse, July 2017), IB co-organized an invited session "Frequency domain Techniques for Time-delay Systems". At the occasion of the 13th-15th IFAC Workshop on Time-delay Systems (Istanbul 2016, Budapest 2018, Sinaia 2019), IB co-organized thematic sessions on Spectral Methods for Rightmost Roots Characterization in LTI Time-delay Systems. Since September 2018, IB is co-leading the national research group GT OSYDI of the CNRS/GDR MACS and is a deputy director of the IRS iCODE Institute of the University Paris Saclay.

11:00-12:00 Ludovic Sacchelli (Lehigh University, Pennsylvania, USA)

Title: Stabilization of non-uniformly observable system

Abstract: A common strategy in dynamic output feedback stabilization is to apply a state feedback to an observer in order to stabilize the coupled state-observer system. It is well known that global stabilizability, paired with uniform observability, implies semi-global stabilisability by dynamic output feedback. However in many generic cases, the system is not uniformly observable, and usual strategies for semi-global stabilization break down. New approaches need to be explored to resolve this issue. We will present case studies to give an outlook for the challenges raised by this problem and highlight a promising answer based on the idea of unitary embeddings of control systems.

Biography: Ludovic Sacchelli is a visiting assistant professor in the Mathematics Department of Lehigh University, in Bethlehem, Pennsylvania. He graduated from Ecole Normale Supérieure de Cachan and received his master's degree in analysis of PDEs from Paris-Sud University in 2015. He obtained a Ph.D. in applied mathematics from Ecole Polytechnique in 2018 on the topic of sub-Riemannian geometry. Ludovic spent the following year as a postdoc in the Electrical Engineering Department of University of Toulon (LIS Lab) before departing for his current position. His research interests lie in sub-Riemannian geometry, control theory and observability.

Techniques champ proche: Du système antennaire à l'application sur le terrain

Mohammed SERHIR
Habilitation à Diriger des Recherches (HDR) onOctober 10, 2019, 2:00 PM at

Cette soutenance aura lieu à CentraleSupélec – Campus de Paris-Saclay

Lieu: Amphi IV  dans le Bât. Eiffel

Composition du jury:

M. Jean-Yves DAUVIGNAC Professeur à l’Université de Nice-Sophia Antipolis, LEAT Rapporteur
M. Raphael GILLARD Professeur à l’INSA de Rennes, IETR Rpporteur
M. Sébastien LAMBOT Professeur à l’Université Catholique de Louvain, Louvain Georadar Research Centre Rpporteur
M. Dominique LESSELIER Directeur de Recherche CNRS, L2S Examinateur
M. Lionel PICHON Directeur de Recherche CNRS, GeePs Examinateur
M. Jean-Michel GEFFRIN Ingénieur de Recherche CNRS, Institut Fresnel Examinateur
M. Régis GUINVARC'H Professeur à CentraleSupélec, SONDRA Invité


Dans ce travail de synthèse, je donne un aperçu de mes activités de recherche en électromagnétisme appliqué. Axées sur la modélisation comportementale, mes premières contributions visaient à proposer une passerelle entre la simulation numérique et la caractérisation expérimentale des antennes. Dans un deuxième temps, j’évoque mes apports dans le thème de la caractérisation d’antennes en champ proche à travers la méthode matricielle pour le calcul du champ lointain. Cette activité expérimentale est à l’origine de plusieurs collaborations nationales et internationales. Enfin, je développe mes travaux sur l’imagerie micro-onde appliquée au radar de sol. J’y présente les conclusions de la modélisation du problème direct par la méthode DGTD et la résolution du problème inverse par Linear Sampling Method. Les applications étudiées sont la détection des systèmes racinaires des arbres et la localisation de câbles souterrains en situation réelle. Les travaux de recherche sur l’imagerie du proche sous-sol sont pluridisciplinaires et constituent le point de convergence de mes activités précédentes y compris les développements antennaires dédiés au radar de sol.


Ps:Vous êtes cordialement invités au pot qui suivra dans la salle du conseil dans l'aile B4 du Bât. Breguet

Control of automated vehicles and their influence on traffic

Seminar on October 03, 2019, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S
Karl H. Johansson

Abstract: Automated and connected road vehicles enable large-scale control and optimisation of the transport system with the potential to radically improve fuel efficiency, decrease the environmental footprint, and enhance safety. In this talk we will focus on automated heavy-duty vehicle platooning, which is currently being implemented and evaluated by several truck manufacturers world-wide. We will discuss how to deploy feedback control of individual platoons utilising the cellular communication infrastructure and how such controlled platoons can be used improve overall traffic conditions. It will be argued that the average total variation of traffic density can be reduced and thereby creating incentives for platooning beyond fuel savings and driver support. Extensive experiments done on European highways will illustrate system performance and safety requirements. The presentation will be based on joint work with collaborators at KTH and at the truck manufacturers Scania and Volvo.

Biography: Karl H. Johansson is Professor at the School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology. He received MSc and PhD degrees from Lund University. He has held visiting positions at UC Berkeley, Caltech, NTU, HKUST Institute of Advanced Studies, and NTNU. His research interests are in networked control systems, cyber-physical systems, and applications in transportation, energy, and automation networks. He has received several best paper awards and other distinctions from IEEE, IFAC and ACM. He has been awarded Distinguished Professor with the Swedish Research Council and Wallenberg Scholar with the Knut and Alice Wallenberg Foundation. He has received the Future Research Leader Award from the Swedish Foundation for Strategic Research and the triennial Young Author Prize from IFAC. He is Fellow of the IEEE and the Royal Swedish Academy of Engineering Sciences, and he is IEEE Distinguished Lecturer.

Control of automated vehicles and their influence on traffic

Seminar on October 03, 2019, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S
Karl H. Johansson

Abstract: Automated and connected road vehicles enable large-scale control and optimisation of the transport system with the potential to radically improve fuel efficiency, decrease the environmental footprint, and enhance safety. In this talk we will focus on automated heavy-duty vehicle platooning, which is currently being implemented and evaluated by several truck manufacturers world-wide. We will discuss how to deploy feedback control of individual platoons utilising the cellular communication infrastructure and how such controlled platoons can be used improve overall traffic conditions. It will be argued that the average total variation of traffic density can be reduced and thereby creating incentives for platooning beyond fuel savings and driver support. Extensive experiments done on European highways will illustrate system performance and safety requirements. The presentation will be based on joint work with collaborators at KTH and at the truck manufacturers Scania and Volvo.

Biography: Karl H. Johansson is Professor at the School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology. He received MSc and PhD degrees from Lund University. He has held visiting positions at UC Berkeley, Caltech, NTU, HKUST Institute of Advanced Studies, and NTNU. His research interests are in networked control systems, cyber-physical systems, and applications in transportation, energy, and automation networks. He has received several best paper awards and other distinctions from IEEE, IFAC and ACM. He has been awarded Distinguished Professor with the Swedish Research Council and Wallenberg Scholar with the Knut and Alice Wallenberg Foundation. He has received the Future Research Leader Award from the Swedish Foundation for Strategic Research and the triennial Young Author Prize from IFAC. He is Fellow of the IEEE and the Royal Swedish Academy of Engineering Sciences, and he is IEEE Distinguished Lecturer.

Commande de systèmes plats avec contraintes et Applications de la Commande sans Modèle aux quadrotors et au Cloud Computing

Madame Maria BEKCHEVA
Thesis defended on July 11, 2019, 2:30 PM at

   CentraleSupélec, 3 rue Joliot Curie, 91192, Gif-sur-Yvette 
Salle : Amphi II, Bât. Eiffel


Composition du jury proposé :

M. Hugues MOUNIER Université Paris-Sud Directeur de thèse
M. Luca GRECO Université Paris-Sud Co-directeur de thèse
M. Emmanuel DELALEAU ENIB Rapporteur
M. Didier THEILLIOL CRAN Rapporteur
Mme Mireille BAYART CRISTAL Examinateur
M. Michel FLIESS Laboratoire LIX - Ecole Polytechnique Examinateur
M. Cédric JOIN CRAN Examinateur
M. Silviu Iulian NICULESCU CNRS- L2S-CentraleSupelec Examinateur

Résumé : 

La première partie de la thèse est consacrée à la commande avec contraintes de systèmes différentiellement plats. Deux types de systèmes sont étudiés : les systèmes non linéaires de dimension finie et les systèmes linéaires à retards. Nous présentons une approche unifiée pour intégrer les contraintes d'entrée/état/sortie dans la planification des trajectoires. Pour cela, nous spécialisons les sorties plates (ou les trajectoires de référence) sous forme de courbes de Bézier. En utilisant la propriété de platitude, les entrées/états du système peuvent être exprimés sous la forme d'une combinaison de sorties plates (courbes de Bézier) et de leurs dérivées. Par conséquent, nous obtenons explicitement les expressions des points de contrôle des courbes de Bézier d'entrées/états comme une combinaison des points de contrôle des sorties plates. En appliquant les contraintes souhaitées à ces derniers points de contrôle, nous trouvons les régions faisables pour les points de contrôle de Bézier de sortie, c'est-à-dire un ensemble de trajectoires de référence faisables. Ce cadre permet d’éviter le recours, en général fort coûteux d’un point de vue informatique, aux schémas d’optimisation.     Pour résoudre les incertitudes liées à l'imprécision de l'identification et modélisation des modèles et les perturbations, nous utilisons la commande sans modèle (Model Free Control-MFC) et dans la deuxième partie de la thèse, nous présentons deux applications démontrant l'efficacité de notre approche : Nous proposons une conception de contrôleur qui évite les procédures d'identification du système du quadrotor tout en restant robuste par rapport aux perturbations endogènes (la performance de contrôle est indépendante de tout changement de masse, inertie, effets gyroscopiques ou aérodynamiques) et aux perturbations exogènes (vent, bruit de mesure). Pour atteindre notre objectif en se basant sur la structure en cascade d'un quadrotor, nous divisons le système en deux sous-systèmes de position et d'attitude contrôlés chacun indépendamment par la commande sans modèle de deuxième ordre dynamique. Nous validons notre approche de contrôle avec trois scénarios réalistes : en présence d'un bruit inconnu, en présence d’un vent variant dans le temps et en présence des variations inconnues de masse, tout en suivant des manœuvres agressives. Nous utilisons la commande sans modèle et les correcteurs « intelligents » associés, pour contrôler (maintenir) l'élasticité horizontale d'un système de Cloud Computing. Comparée aux algorithmes commerciaux d’Auto-Scaling, notre approche facilement implémentable se comporte mieux, même avec de fluctuations aigües de charge. Ceci est confirmé par des expériences sur le cloud public Amazon Web Services (AWS).

Mots-clés :

Platitude différentielle, Commande sans modèle, Commande des systèmes avec contraintes, Quadrotors, Cloud Computing.

Imaging with Electromagnetic Waves and Fields, from Eddy Current to Microwave

Seminar on July 04, 2019, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Yu Zhong

Abstract: Imaging problems with electromagnetic waves and fields are of great interest due to non-intrusive inspection enabled by such imaging methods. In this talk, two major imaging methods in two different frequency bands will mainly be discussed, eddy current imaging at low frequency and microwave imaging at resonant frequency regime. As these two types of problems are nonlinear and unstable, from mathematical perspectives, one will show, in each, how these difficulties are specifically handled.

In the first part, the physical mechanism of eddy current inspection will be discussed, followed by a full description of an inspection system. An imaging method that could work with the measured eddy current signals will then be proposed. It includes a forward model for eddy current interactions with defects, an experimental signal calibration model, a defect model for inversion, and an optimization scheme. It will be shown how these bricks work together to provide imaging results from phaseless eddy current signals.
In the second part, the highly nonlinear inverse scattering problems (ISPs) will be shown how to be efficiently tackled by the recently proposed contraction integral equation for inversion (CIE-I), in both three-dimensional (3-D) problems and 2-D problems with phaseless data. With the CIE-I, the non-linearity of ISPs is largely remedied by suppressing multiple scattering effects within the inversions, without compromising the physical model accuracy. This is very important when handling the computationally costly 3-D ISPs, since  each iteration of inversion might cost many computational resources. Compared to conventional imaging methods with the well-known Lippmann-Schwinger integral equation (LSIE), this new imaging method with CIE-I shows much better performance when tackling both 3-D ISPs and 2-D ones with phaseless data, w.r.t. resolvability against non-linearity and convergence speed.


Biography: Yu Zhong received the B.E. and M.E. degrees in electronic engineering from Zhejiang University, Hangzhou, China, in 2003 and 2006, respectively, and the Ph.D. degree in electrical and computer engineering from the National University of Singapore, Singapore, in 2010. He was a Research Engineer and a Fellow with the National University of Singapore, from 2009 to 2013, then involved in a French-Singaporean MERLION Cooperative Program. Since 2014, he has been a Scientist with the Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research, Singapore. He has been regularly invited to the Laboratoire des Signaux et Systèmes (L2S), Gif-sur-Yvette, France, as Senior Scientific Expert once per year since 2012. He was invited as a Visiting Professor to University of Trento, Italy, in June 2018. His current research interests include numerical methods for inverse problems associated with waves and fields, electromagnetic and acoustic modeling with complex materials, and non-destructive testing.

Probabilité et Mécanique Quantique: Loi de Bayes, Estimation de paramètres

Seminar on May 09, 2019, 11:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S
Clément Pellegrini

Abstract. Dans cet exposé nous reviendrons sur le modèle mathématique décrivant l'expérience de Serge Haroche: "quantum non-demolition experiment" pour lequel il a reçu le prix Nobel de Physique. A travers ce modèle nous verrons comment la loi de Bayes apparait naturellement dans le contexte de la mécanique quantique: notamment dans le contexte des mesures indirectes. Nous verrons ensuite comment nous pouvons faire de l'estimation de paramètres sur ces modèles et comment on peut parler de stabilité du filtre sous-jacent. Cet exposé ne demande pas de prérequis de mécanique quantique, nous introduirons les concepts de base nécessaires.

Bio. Clément Pellegrini, Maitre de conférences à l'université Paul Sabatier Toulouse III depuis 2009
Post-doctorat sous la direction de Francesco Petrucionne à Durban 2008-2009
Doctorat sous la direction de Stéphane Attal à l'université Claude Bernard Lyon: thèse soutenue en 2008


Thesis defended on January 26, 2018, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-05

The thesis work contained in this manuscript is dedicated to the Advanced Driving Assistance Systems, which has become nowadays a strategic research line in many car companies. This kind of systems can be seen as a first generation of assisted or semi-autonomous driving, that will set the way to fully automated vehicles. The first part of this memory focuses on the analysis and control of lateral dynamics control applications - Autosteer by target tracking and the Lane Centering Assistance System (LCA). In this framework, safety plays a key role, bringing into focus the application of different constrained control techniques for linear parameter-varying (LPV) models. Model Predictive Control (MPC) and Interpolation Based Control (IBC) have been the ones privileged in the present work. In addition, it is a critical feature to design robust control systems that ensure a correct behavior under system’s variation of parameters or in the presence of uncertainty. Robust Positive Invariance (RPI) theory tools are considered to design robust LPV control strategies with respect to large vehicle speed variations and curvature of the road changes. The second axis of this thesis is the optimization-based trajectory planning for overtaking and lane change in highways with anti-collision enhancements. To achieve this goal, an exhaustive description of the possible scenarios that may arise is presented, allowing to formulate an optimization problem which maximizes passenger comfort and ensures system constraints’ satisfaction.

Mots-clés :


Composition du jury proposé

M. Antonios TZES   NYU Abu Dhabi   Rapporteur

M. Arben CELA   Université Paris-Est, ESIEE Paris   Rapporteur

M. Saïd MAMMAR   Université d'Evry Val-d'Essonne   Examinateur

M. Eduardo FERNANDEZ CAMACHO   Universidad de Sevilla  Examinateur

M. François FAUVEL   Renault SAS   Examinateur

M. Sorin OLARU   CentraleSupelec   Directeur de these

M. Pedro RODRIGUEZ AYERBE   CentraleSupelec   CoDirecteur de these

M. Renaud DEBORNE   Renault SAS   Invité

M. Guillermo PITA GIL   Renault SAS   Invité

Evaluation de performance d’une ligne ferroviaire suburbaine partiellement équipée d’un automatisme CBTC

Juliette POCHET
Thesis defended on January 12, 2018, 10:30 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40

En zone dense, la croissance actuelle du trafic sur les lignes ferroviaires suburbaines conduit les exploitants à déployer des systèmes de contrôle-commande avancés des trains, tels que les systèmes dits « CBTC » (Communication Based Train Control) jusque-là réservés aux systèmes de métro. Les systèmes CBTC mettent en œuvre un pilotage automatique des trains et permettent une amélioration significative des performances. Par ailleurs, ils peuvent inclure un module de supervision de la ligne en charge de réguler la marche des trains en cas d’aléa, améliorant ainsi la robustesse du trafic. Face au problème de régulation, la recherche opérationnelle a produit un certain nombre de méthodes permettant de répondre efficacement aux perturbations, d’une part dans le secteur métro et d’autre part dans le secteur ferroviaire lourd. En tirant profit de l’état de l’art et des avancées faites dans les deux secteurs, les travaux présentés dans ce manuscrit cherchent à contribuer à l’adaptation des fonctions de régulation des systèmes CBTC pour l’exploitation de lignes ferroviaires suburbaines. L’approche du problème débute par la construction de l’architecture fonctionnelle d’un module de supervision pour un système CBTC standard. Nous proposons ensuite une méthode de régulation basée sur une stratégie de commande prédictive et sur une optimisation multi-objectif des consignes des trains automatiques. Afin d’être en mesure d’évaluer précisément les performances d’une ligne ferroviaire suburbaine équipée d’un automatisme CBTC, il est nécessaire de s’équiper d’un outil de simulation microscopique adapté. Nous présentons dans ce manuscrit l’outil SNCF nommé SIMONE qui permet une simulation réaliste du point de vue fonctionnel et dynamique d’un système ferroviaire incluant un système CBTC. Les objectifs des travaux de thèse nous ont naturellement conduits à prendre part, avec l’équipe SNCF, à la spécification, à la conception et à l’implémentation de cet outil. Finalement, grâce à l’outil SIMONE, nous avons pu tester la méthode de régulation proposée sur des scénarios impliquant des perturbations. Afin d’évaluer la qualité des solutions, la méthode multi-objectif proposée a été comparée à une méthode de régulation individuelle basée sur une heuristique simple. La méthode de régulation multi-objectif propose de bonnes solutions au problème, dans la majorité des cas plus satisfaisantes que celles proposées par la régulation individuelle, et avec un temps de calcul jugé acceptable. Le manuscrit se termine par des perspectives de recherche intéressantes.

Membres du jury :

M. Guillaume SANDOU, Professeur, CentraleSupélec, FRANCE - Directeur de thèse
M. Joaquin RODRIGUEZ, Directeur de Recherche, Ifsttar, FRANCE - Rapporteur
M. François DELMOTTE, Professeur, Université d'Artois, FRANCE - Rapporteur
M. Sylvain BARO, Ingénieur, SNCF Réseau, FRANCE - Examinateur
Mme Sihem TEBBANI, Professeure, CentraleSupélec, FRANCE - Examinateur
Mme Evguenia DMITRIEVA, Ingénieur, RATP, FRANCE - Examinateur

S³ seminar : Non-negative orthogonal greedy algorithms for sparse approximation

Seminar on December 08, 2017, 10:30 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40

Sparse approximation under non-negativity constraints naturally arises in several applications. Many sparse solvers can be directly extended to the non-negative setting. It is not the case of Orthogonal Matching Pursuit (OMP), a well-known sparse solver, which gradually updates the sparse solution support by selecting a new dictionary atom at each iteration. When dealing with non-negative constraints, the orthogonal projection computed at each OMP iteration is replaced by a non-negative least-squares (NNLS) subproblem whose solution is not explicit. Therefore, the usual recursive (fast) implementations of OMP do not apply. A Non-negative version of OMP (NNOMP) was proposed in the recent literature together with several variations. In my talk, I will first recall the principle of greedy algorithms, in particular NNOMP, and then, I will introduce our proposed improvements, based on the use of the active-set algorithm to address the NNLS subproblems. The structure of the active-set algorithm is indeed intrisically greedy. Moreover, the active-set algorithm can be called with a warm start, allowing us to fastly solve the NNLS subproblems. (Joint work with Charles Soussen (L2S), Jérôme Idier (LS2N), and El-Hadi Djermoune (CRAN).)

Localisation de sources distribuées cohérentes - Méthodes paramétriques et approches inverses

Habilitation à Diriger des Recherches (HDR) onDecember 06, 2017, 2:00 PM at

Liste des membres du jury





Jean-Hugh THOMAS

Philippe FOSTER

Séminaire d'Automatique du Plateau de Saclay : Necessary and sufficient condition for exponential synchronization of nonlinear systems

Seminar on November 30, 2017, 11:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Vincent Andrieu (CNRS Researcher, LAGEP-CNRS, Université de Lyon 1, France)

Based on recent works on transverse exponential stability, some necessary and sufficient conditions for the existence of a (locally) exponential synchronizer are established. We show that the existence of a structured synchronizer is equivalent to the existence of a stabilizer for the individual linearized systems (on the synchronization manifold) by a linear state feedback. This, in turns, is also equivalent to the existence of a symmetric covariant tensor field which satisfies a kind of Lyapunov inequality. Based on this property, we provide the construction of such synchronizer. We discuss then the possibility to achieve global synchronization.

Bio. Vincent Andrieu graduated in applied mathematics from “INSA de Rouen”, France, in 2001. After working in ONERA (French aerospace research company), he obtained a PhD degree from “Ecole des Mines de Paris” in 2005. In 2006, he had a research appointment at the Control and Power Group, Dept. EEE, Imperial College London. In 2008, he joined the CNRS-LAAS lab in Toulouse, France, as a “CNRS-chargé de recherche”. Since 2010, he has been working in LAGEP-CNRS, Université de Lyon 1, France. In 2014, he joined the functional analysis group from Bergische Universitäte Wuppertal in Germany, for two sabbatical years. His main research interests are in the feedback stabilization of controlled dynamical nonlinear systems and state estimation problems. He is also interested in practical application of these theoretical problems, and especially in the field of aeronautics and chemical engineering.

Séminaire d'Automatique du Plateau de Saclay : Observer design for nonlinear systems

Seminar on November 30, 2017, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Pauline Bernard (PhD, PSL Reserch University, Systems and Control Center, MINES ParisTech)

Unlike for linear systems, no systematic method exists for the design of observers for nonlinear systems. However, observer design may be more or less straightforward depending on the coordinates we choose to express the system dynamics. In particular, some specific structures, called normal forms, have been identified for allowing a direct and easier observer construction. It follows that a common way of addressing the problem consists in looking for a reversible change of coordinates transforming the expression of the system dynamics into one of those normal forms, design an observer in those coordinates, and finally deduce an estimate of the system state in the initial coordinates via inversion of the transformation. This talk gives contributions to each of those three steps.
First, we show the interest of a new triangular normal form with continuous (non-Lipschitz) nonlinearities. Indeed, we have noticed that systems which are observable for any input but with an order of differential observability larger than the system dimension, may not be transformable into the standard Lipschitz triangular form, but rather into an "only  continuous" triangular form. In this case, the famous high gain observer no longer is sufficient, and we propose to use  homogeneous observers instead.
Another canonical form of interest is the Hurwitz linear form which admits a trivial observer. The question of transforming a nonlinear system into such a form has only been addressed for autonomous systems with the so-called Lunberger or Kazantzis-Kravaris observers. This design consists in solving a PDE and we show here how it can be extended to time-varying/controlled systems.
As for the inversion of the transformation, this step is far from trivial in practice, in particular when the domain and image spaces have different dimensions. When no explicit expression for a global inverse is available, numerical inversion usually relies on the resolution of a minimization problem with a heavy computational cost. That is why we have developed a method to avoid the explicit inversion of the transformation by bringing the observer dynamics (expressed in the canonical form coordinates) back into the initial system coordinates. This is done by dynamic extension, i.e. by adding some new coordinates to the system and transforming an injective immersion into a surjective diffeomorphism.

Bio. Pauline Bernard graduated from MINES ParisTech in 2014 with a Master degree in Applied Mathematics and Automatic Control. In 2017, she obtained her Ph.D. in Mathematics and Automatic Control at PSL Reserch University, prepared at the Systems and Control Center, MINES ParisTech under the supervision of Laurent Praly and Vincent Andrieu.

Séminaire d’Automatique du plateau de Saclay : Stability analysis of discrete-time infinite-horizon control with discounted cost.

Seminar on November 27, 2017, 3:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Romain Postoyan (CNRS researcher, Centre de Recherche en Automatique de Nancy)

We analyse the stability of general nonlinear discrete-time systems controlled by an optimal sequence of inputs that minimizes an infinite-horizon discounted cost. First, assumptions related to the controllability of the system and its detectability with respect to the stage cost are made. Uniform semiglobal and practical stability of the closed-loop system is then established, where the adjustable parameter is the discount factor. Stronger stability properties are thereupon guaranteed by gradually strengthening the assumptions. Next, we show that the Lyapunov function used to prove stability is continuous under additional conditions, implying that stability has a certain amount of nominal robustness. The presented approach is flexible and we show that robust stability can still be guaranteed when the sequence of inputs applied to the system is no longer optimal but near-optimal. We also analyse stability for cost functions in which the importance of the stage cost increases with time, opposite to discounting. Finally, we exploit stability to derive new relationships between the optimal value functions of the discounted and undiscounted problems, when the latter is well-defined.

This is a joint work with Lucian Busoniu (TU Cluj, Romania), D. Nesic (University of Melbourne, Australia) and J. Daafouz (CRAN, Université de Lorraine).

Bio. Romain Postoyan received the master degree (``diplôme d'ingénieur'') in Electrical and Control Engineering from ENSEEIHT (France) in 2005. He obtained the M.Sc. by Research in Control Theory & Application from Coventry University (United Kingdom) in 2006 and the Ph.D. in Control Theory from Université Paris-Sud (France) in 2009. In 2010, he was a research assistant at the University of Melbourne (Australia). Since 2011, he is a CNRS researcher at the Centre de Recherche en Automatique de Nancy (France). He serves as an Associate Editor at the Conference Editorial Board of the IEEE Control Systems Society and for the journals: Automatica, IEEE Control Systems Letters, and IMA Journal of Mathematical Control and Information.

Analyse de stabilité des systèmes à des coefficients qui dépendent du retard.

Chi Jin
Thesis defended on November 21, 2017, 4:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Ampère

Des systèmes  avec des coefficients dépendant du retard  ont  été rencontrés dans diverses  applications de la science et de l'ingénierie. Malgré la littérature abondante  sur les systèmes  de temporisation, il y a peu  de résultats concernant l'analyse  de stabilité des systèmes  avec  des coefficients dépendant du retard. Cette  thèse  est  consacrée  à l'analyse de stabilité de cette  classe de systèmes.  Les méthodes d'analyse  de la stabilité sont développées  à partir de l'équation caractéristique correspondante suivant une approche  généralisée  $ tau  $ -décomposition. Étant  donné un intervalle d'intérêt de retard, nous sommes  capables  d'identifier toutes  les valeurs  de retard critique  contenues  dans  cet intervalle pour lesquelles   l'équation  caractéristique admet   des  racines  sur  l'axe  imaginaire du  plan  complexe.   Le critère   de  direction  de  croisement  des   racines  sont   proposées   pour   déterminer  si  ces  racines caractéristique se déplacent vers  le plan  complexe  demi-gauche ou demi-droite lorsque  le paramètre de retard passe par ces valeurs de retard  critique. Le nombre de racines caractéristiques instables  pour un retard donné peut  ainsi être  déterminé. Notre  analyse  comprend les systèmes  avec un seul retard ou  des  retards proportionnés sous  certaines   hypothèses.  Le critère de  direction de  croisement  des racines  développés  dans cette  thèse  peut  être  appliqués  aux multiple racines  caractéristiques, ou aux racines  caractéristiques dont  la position paramétrée par  le retard est  tangent  à l'axe  imaginaire. En tant  qu'application, il est  démontré que  les  systèmes   avec  des  coefficients dépendant  du  retard peuvent provenir de schémas  de contrôle  qui utilisent une sortie  retardée pour approcher ses dérivés pour  la stabilisation. Les méthodes d'analyse  de stabilité développées  dans cette  thèse  sont adaptées et appliquées  pour trouver les intervalles de retard qui atteignent un taux  de convergence demandé du système  en boucle fermée.

Mots clés : Systèmes à retard, Coefficients à retardement, Analyse de stabilité, Conception de contrôle, Approche géométrique, Analyse paramétrique.

Composition du jury

M. Islam BOUSSAADA PSA & Laboratoire des Signaux et Systèmes  (L2S) Université Paris Saclay CentraleSupélec-CNRS-Université Paris Sud  Directeur de thèse

M. Rifat SIPAHI  Mechanical and Industrial Engineering,Northeastern University  Rapporteur

M. Vladimir RASVAN Universitatea din Craiova Rapporteur

M. Yang KUANG College of Liberal Arts and Sciences, Arizona State University Rapporteur

M Gabor STEPAN Department of Applied Mechanics, Budapest University of Technology   and Economies Examinateur

Mme Catherine  BONNET INRIA Saclay - Ile-de-France and L2S,CentraleSupelec Examinateur

M. Silviu Niculescu L2S-CENTRALESUPELEC, CNRS Co-directeur de thèse

M. Keqin GU Southern Illinois University Edwardsville Co-directeur de thèse

Understanding Cell Dynamics in Cancer from Control and Mathematical Biology Standpoints: Particular Insights into the Modeling and Analysis Aspects in Hematopoietic Systems and Leukemia

Thesis defended on November 21, 2017, 1:30 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40

Medical research is looking for new combined targeted therapies against cancer. Our research project -which involves intensive collaboration with hematologists from Saint-Antoine Hospital in Paris- is imbued within a similar spirit and fits the expectations of a better understanding of the behavior of blood cell dynamics. In fact, hematopoiesis provides a paradigm for studying all the mammalian stem cells, as well as all the mechanisms involved in the cell cycle. We address multiple issues related to the modeling and analysis of the cell cycle, with particular insights into the hematopoietic systems. Stability features of the models are highlighted, since trajectories of the systems reflect the most prominent healthy or unhealthy behaviors of the biological process under study. We indeed perform stability analyses of systems describing healthy and unhealthy situations, with a particular interest in the case of acute myeloblastic leukemia (AML). Thus, we pursue the objectives of understanding the interactions between the various parameters and functions involved in the mechanisms of interest. For that purpose, an advanced stability analysis of the cell fate evolution in treated or untreated leukemia is performed in several modeling frameworks, and our study suggests new anti-leukemic combined chemotherapy. Throughout the thesis, we cover many biological evidences that are currently undergoing intensive biological research, such as: cell plasticity, mutations accumulation, cohabitation between ordinary and mutated cells, control and eradication of cancer cells, cancer dormancy, etc.

Among the contributions of Part I of the thesis, we can mention the extension of both modeling and analysis aspects in order to take into account a proliferating phase in which most of the cells may divide, or die, while few of them may be arrested during their cycle for unlimited time. We also introduce for the first time cell-plasticity features to the class of systems that we are focusing on.

Next, in Part II, stability analyses of some differential-difference cell population models are performed through several time-domain techniques, including tools of Comparative and Positive Systems approaches. Then, a new age-structured model describing the coexistence between cancer and ordinary stem cells is introduced. This model is transformed into a nonlinear time-delay system that describes the dynamics of healthy cells, coupled to a nonlinear differential-difference system governing the dynamics of unhealthy cells. The main features of the coupled system are highlighted and an advanced stability analysis of several coexisting steady states is performed through a Lyapunov-like approach for descriptor-type systems. We pursue an analysis that provides a theoretical treatment framework following different medical orientations, among which: i) the case where therapy aims to eradicate cancer cells while preserving healthy ones, and ii) a less demanding, more realistic, scenario that consists in maintaining healthy and unhealthy cells in a controlled stable dormancy steady-state. Mainly, sufficient conditions for the regional exponential stability, estimate of the decay rate of the solutions, and subsets of the basins of attraction of the steady states of interest are provided. Biological interpretations and therapeutic strategies in light of emerging AML-drugs are discussed according to our findings.

Finally, in Part III, an original formulation of what can be interpreted as a stabilization issue of population cell dynamics through artificial intelligence planning tools is provided. In that framework, an optimal solution is discovered via planning and scheduling algorithms. For unhealthy hematopoiesis, we address the treatment issue through multiple drug infusions. In that case, we determine the best therapeutic strategy that restores normal blood count as in an ordinary hematopoietic system.

Mots-clés :  Analyse de stabilité, PDEs et Systèmes à retards, Théorie de Lyapunov, Modélisation des systèmes biologiques, Analyse des systèmes biologiques, Cancer, Dynamique des populations cellulaires, Hématopoïèse, Leucémie.

Composition du jury proposé
Mme Catherine BONNET     CentraleSupélec     CoDirecteur de thèse
M. Jean CLAIRAUMBAULT     Inria Paris, Sorbonne Paris 6     CoDirecteur de thèse
M. Frédéric MAZENC     Inria Saclay, CNRS, CentraleSupélec     CoDirecteur de thèse
Mme Françoise LAMNABHI-LAGARRIGUE     CNRS, L2S, CentraleSupélec     Examinateur
M. Raphaël  ITZYKSON     Hôpital Saint-Louis Paris     Examinateur
M. Alexander MEDVEDEV     Uppsala University, Sweden     Examinateur
M. Mostafa ADIMY     Inria Grenoble-Rhone Alpes     Rapporteur
M. Pierdomenico  PEPE     University of L'Aquila, Italy     Rapporteur

Séminaire d'Automatique du Plateau de Saclay : Message-passing computation of the harmonic influence in social networks

Seminar on November 21, 2017, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Paolo Frasca (CNRS Researcher, NeCS team, GIPSA-lab, Grenoble, France).

The harmonic influence is a measure of node influence in social networks that quantifies the ability of a leader node to alter the average opinion of the network, acting against an adversary field node. The definition of harmonic influence assumes linear interactions between the nodes described by an undirected weighted graph; its computation requires to solve, for every node, a discrete Dirichlet problem associated to a grounded Laplacian. In this talk, I will describe a message-passing distributed algorithm that concurrently computes the harmonic influence of all nodes and provide a convergence analysis for it. The algorithm converges asymptotically, under the only assumption of the interaction Laplacian being symmetric. However, the convergence value does not in general coincide with the harmonic influence: simulations show that when the network has a larger number of cycles, the algorithm becomes slower and less accurate, but nevertheless provides a useful approximation. Simulations also indicate that the symmetry condition is not necessary for convergence and that performance (both in terms of speed and asymptotical error) scales well in the number of nodes of the graph.

Bio. Paolo Frasca received the Ph.D. degree in Mathematics for Engineering Sciences from Politecnico di Torino, Torino, Italy, in 2009. Between 2008 and 2013, he has held research and visiting positions at the University of California, Santa Barbara (USA), at the IAC-CNR (Rome, Italy), at the University of Salerno (Italy), and at the Politecnico di Torino. From 2013 to 2016, he has been an Assistant Professor at the University of Twente in Enschede, the Netherlands. In October 2016 he joined the CNRS as Researcher: he is currently affiliated with GIPSA-lab in Grenoble, France.
His research interests are in the theory of network systems and cyber-physical systems, with applications to robotic, sensor, infrastructural, and social networks. On these topics, Dr. Frasca has (co)authored more than fifty journal and conference papers and has given invited talks at several international institutions and events, including the 2015 SICE International Symposium on Control Systems in Tokyo. He is a recipient of the 2013 SIAG/CST Best SICON Paper Prize. He has been a visiting professor at the LAAS, Toulouse, France in 2016 and at the University of Cagliari, Italy in 2017.
Dr. Frasca has served as Associate Editor of several international conferences, including IEEE CDC, ACC, ECC, MTNS, IFAC NecSys, and is currently serving as Associate Editor for the International Journal of Robust and Nonlinear Control, the Asian Journal of Control, and the IEEE Control Systems Letters.

Systèmes eco-routing adaptatifs de navigation dépendant du temps avec des contraintes

Thesis defended on November 16, 2017, 3:30 PM at CentraleSupelec (Gif-sur-Yvette)

L'éco-routage est une méthode de navigation de véhicule qui choisit les routes tout  en minimisant la consommation de carburant, la consommation d'énergie ou les émissions polluantes pour un voyage vers une destination donnée.  C'est l'une des techniques qui tentent de réduire le coût opérationnel  du véhicule ou l'empreinte environnementale. Ce travail passe en revue  les méthodes actuelles d'éco-routage et propose une nouvelle méthode  conçue pour surmonter leurs lacunes. La plupart des méthodes actuelles attribuent à chaque route du réseau  routier un coût constant qui représente la consommation du véhicule ou  la quantité de polluants émis, puis utilisent un algorithme de routage  optimal pour trouver le chemin qui minimise la somme des coûts. Diverses extensions sont considérées dans la littérature. L'éco-routage  contraint permet d'imposer des limites au temps de déplacement, à la  consommation d'énergie et aux émissions polluantes. L'éco-routage  dépendant du temps permet le routage sur un graphique avec des coûts qui sont des fonctions du temps. L'éco-routage adaptatif permet d'adapter  la solution de routage écologique si elle devient invalide en raison  d'un développement inattendu sur la route. Il existe des méthodes  optimales de routage écologique qui résolvent soit l'éco-routage basé  sur le temps, soit l'éco-routage contraint ou l'éco-routage adaptatif.  Tous comportent des frais généraux de calcul considérablement plus  élevés en ce qui concerne l'éco-routage standard et, selon les  meilleures connaissances de l'auteur, il n'existe pas de méthode publiée qui appuie la combinaison des trois : routage écologique adaptatif  dépendant du temps restreint. Dans ce travail, on argumente que les  coûts de routage utilisé sont très incertains en raison de leur  dépendance à l'égard du trafic immédiat autour du véhicule, du  comportement du conducteur et d'autres perturbations. On soutient en  outre que, étant donné que ces coûts sont incertains, il y a peu  d'avantages à utiliser un routage optimal, car l'optimalité de la  solution ne tient que tant que les coûts de routage sont corrects. Au  lieu de cela, une méthode d'approximation est proposée dans ce travail.  Les frais généraux calculés sont plus faibles sachant que la solution  n'est pas nécessairement optimale. Cela permet l'éco-routage adaptatif  dépendant du temps restreint.

Mots-clés : 

eco-routing,map-matching,systèmes de navigation,


Composition du jury proposé
M. Hugues MOUNIER     Université Paris-Sud     Directeur de these
M. René NATOWICZ     ESIEE Paris     Rapporteur
M. Antonio SCIARRETTA     IFP Energies nouvelles     Examinateur
M. Arben CELA     ESIEE Paris     Examinateur
Mme Brigitte D'ANDRéA-NOVEL     Mines ParisTech     Examinateur
Mme Dorothée NORMAND CYROT     L2S-CentraleSupelec     Examinateur
M. Michel BASSET     Laboratoire MIPS     Rapporteur
M. Philippe MOULIN        IFPEN     Invité
M. Silviu-Iulian NICULESCU        L2S-CentraleSupelec     Invité