Séminaire d'Automatique du plateau de Saclay

Séminaire le 11 Mars 2020, 14h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Claudio Gaz

14:00-15:00: Claudio Gaz (Post-Doc researcher, Department of Computer, Control and Management Engineering (DIAG), Sapienza Università di Roma, Italy)

Title: The role of modelling and parameter identification for controlling robotic and biological systems.

Abstract: Mathematical models are widely employed to describe phenomena in diverse domains, as natural or social sciences, or engineering. While model-less approaches (i.e., machine learning techniques) may neglect an explicit knowledge of the laws behind the system under study, the implementation of advanced control strategies (i.e., optimal or robust control) requires more effort with respect to model-based approaches, which, conversely, need a reliable and identifiable mathematical model. Having the symbolic structure of the model representing the considered system, a crucial process consists in the identification of the intrinsic model parameters for the actual observed system, in order to have algebraic or differential equations able to reliably describe the process under study. In robotics, a dynamic model is the relationship between joint motion (positions, velocities and accelerations) and applied joint torques. The knowledge of accurate dynamic models is of fundamental importance for many robotic applications, such as for planning minimum energy trajectories, when regulating force or imposing a desired impedance control at the contact, or when implementing strategies for the sensorless detection and isolation of unexpected collisions. By means of a dynamic observer of the unknown actuation faults (a.k.a. the residual vector), it is possible to retrieve an estimation of the external disturbances, thus unforeseen collisions. Furthermore, when a collision is sensed, possible countermeasures may be taken, as reaction maneuvers like human reflexes. Moreover, human-robot collaboration strategies in industrial settings are also achieved by means of the residual vector: for instance, the orientation of a workpiece held by the end-effectorof a manipulator can be changed by simply pushing or pulling the robot structure, while preserving its position. Beyond robotics, parameters identification is a critical issue even in biomedical contexts: for instance, the tuning of artificial pancreas devices for insulin-resistant patients. A recently published mathematical model accurately describing human glucose homeostasis is exploited to generate virtual patients: in particular, the glycemic profile of a healthy patient, together with the identified insulin-resistant patient parameters, can be successfully used to tune an external controller infusing insulin by subcutaneous injections.

Biography: Claudio Gaz is a Post-Doc researcher at the Department of Computer, Control and Management Engineering (DIAG) of Sapienza Università di Roma (Italy), where he received a Master Degree in Control Engineering with the highest mark in 2011 and a Ph.D. in Automation and Operational Research in 2016. He received in 2019 the French national qualification as maître de conférences for the class 61 (Génie informatique, automatique et traitement du signal). His main interests are mathematical modeling, parameter identification and control of robotics and biological systems. In particular, he dealt with the dynamic parameters identification of well-known manipulators, such as the KUKA LWR, the Universal Robots UR10, the Kinova Jaco Arm 2 and the Franka Emika Panda. He was a visiting researcher at Airbus (Airbus Group) in Suresnes (France) and at the German Aerospace Center (DLR) in Oberpfaffenhofen (Germany). He is currently collaborating also with the Italian National Research Council (CNR-IASI) on issues concerning the control of glycemia for insulin-resistant patients.

Séminaire d'Automatique du plateau de Saclay

Séminaire le 14 Février 2020, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Jean Auriol & Federico Bribiesca-Argomedo

10:00-11:00 Jean Auriol (Chargé de recherche, CNRS, L2S, CentraleSupélec)
Title: Robust backstepping stabilization of linear hyperbolic PDEs systems. Application to a drilling problem.

Abstract: Linear hyperbolic systems naturally arise when modeling industrial processes for which the dynamics involve a transport phenomenon (related applications include electric transmission lines, traffic flow, oil well drilling…). These systems are the source of complex control and engineering problems (mostly due to the transport phenomena and the presence of destabilizing terms), which have impact in terms of environmental safety and economic feasibility. In this presentation, we develop operating methods for the control of such hyperbolic systems. More precisely, using a backstepping approach combined with a rewrite of the system as a difference equation, we design an explicit control law (and the corresponding dual observer) that guarantees the robust output feedback stabilization of a system of two hyperbolic PDEs.  The proposed control law  introduces three degrees of freedom (by means of tuning parameters) that enable a trade-off between performance and robustness, between disturbance rejection and sensitivity to noise. The proposed approach can be extended to higher dimensional systems and networks interconnected systems. Finally, we conclude this presentation by considering the problem of toolface control for directional drilling operations with the bit off-bottom. The torsional dynamics of such a system can be modeled as a non-linear hyperbolic system for which a robust backstepping-based state-observer is  designed to monitor at all times the torque and the RPM. Using these estimations, we design an algorithm that controls the toolface orientation. The different algorithms are tested against real field data.

Biography: Jean Auriol received his Master degree in civil engineering in 2015 (major: applied maths) in MINES ParisTech, part of PSL Research University and in 2018 his Ph.D. degree in control theory and applied mathematics from the same university (Centre Automatique et Systèmes). His Ph.D. thesis, entitled Robust design of backstepping controllers for systems of linear hyperbolic PDEs, has been nominated for the best thesis award given by the GDR MACS and the Section Automatique du Club EEA in France. From 2018 to 2019, he was a Posdoctoral Researcher at the Department of Petroleum Engineering, University of Calgary, AB, Canada, where he was working on the implementation of backstepping control laws for the attenuation of mechanical vibrations in drilling systems. From December 2019, he is a Junior Researcher (Chargé de Recherches) at CNRS, Université Paris-Saclay, Centrale Supelec, Laboratoire des Signaux et Systèmes (L2S), Gif-sur-Yvette, France.
His research interests include robust control of hyperbolic systems, neutral systems, networks and interconnected systems.

11:00-12:00 Federico Bribiesca-Argomedo (Associate Professor, Department of Mechanical Engineering, Institut National des Sciences Appliquées de Lyon)

Title: Handling interconnections in hyperbolic-PDE/ODE systems with reduced over-actuation.

Abstract: Linear hyperbolic PDEs are a common representation for natural or artificial processes where some quantity: matter, energy, information, etc., propagates with a finite speed on a spatial, or at least space-like, domain. In particular, systems of coupled hyperbolic PDEs are a common occurrence, since balance laws rarely appear in an isolated manner, and information in a system (e.g., the effect of actuation on a process) tends to propagate in all, or at least several, spatial directions. In this talk we will focus on the use of the infinite-dimensional backstepping method to simplify coupling structures in systems of hyperbolic PDEs, allowing for constructive control designs that do not require the use of "one actuator per transport equation," thus reducing the need for over-actuated systems. The focus will be on results showing how the method extends to cases where ODE dynamics are present on the actuated and/or unactuated boundaries of hyperbolic systems. Particular attention will be paid to the robustness of such designs, which can require an "infinite bandwidth" in their more naive forms, with respect to small delays in the control loop. A more practical control design will be presented, using adequately designed filters to restrict the bandwidth of the resulting controller while preserving the stability of the closed-loop system.

Biography: Federico Bribiesca-Argomedo received the B.Sc. degree in mechatronics engineering from the Tecnológico de Monterrey, Monterrey, Mexico, in 2009, the M.Sc. degree in control systems from Grenoble INP, Grenoble, France, in 2009, and the Ph.D. degree in control systems from GIPSA-Laboratory, Grenoble University, Grenoble. He held a post-doctoral position with the Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, USA. He is currently an Associate Professor with the Department of Mechanical Engineering, Institut National des Sciences Appliquées de Lyon, Lyon, France, attached to Ampère Laboratory. Research interests include control of hyperbolic and parabolic partial differential equations and nonlinear control theory. Past and current applications include tokamak safety factor profiles, electrochemical models of Li-ion batteries and energy distribution networks.

Séminaire d'Automatique du plateau de Saclay

Séminaire le 4 Décembre 2019, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Paolo Mason & Hendra Nurdin

10:00-11:00 Paolo Mason (Chargé de recherche, CNRS, L2S, CentraleSupélec)

Title: Controllability of the Schrodinger equation via adiabatic methods

Abstract: In this presentation I will consider the approximate controllability problem for the bilinear Schrodinger equation. In particular I will focus on the application of adiabatic techniques in presence of conical eigenvalues intersections of the Hamiltonian operator. These methods allow to design, in a constructive way, control laws capable of (approximately) steering the system from an eigenstate of the Hamiltonian to an arbitrary target state (or, more precisely, to an arbitrary density distribution). The relationship between our results and other controllability results for the bilinear Schrodinger equation will be discussed, as well as the connection between adiabatic and singular perturbation techniques. Finally, in order to justify the applicability of the presented results, I will provide physically meaningful classes of Hamiltonian operators
for which eigenvalues intersections are generically conical.

Biography: Paolo Mason was born in Dolo, Italy, in 1978. He received the Laurea degree in mathematics from the University of Padova, Italy, in 2002, and the Ph.D. degree from SISSA, Trieste, Italy, in 2006. Since 2009 he works as a “chargé de recherche” (researcher) for CNRS at the Laboratoire des Signaux et Systèmes, Gif-sur- Yvette, France. His research interests include geometric control theory, quantum control and hybrid systems. 

11:00-12:00 Hendra Nurdin (Senior Lecturer, School of Electrical Engineering and Telecommunications, UNSW, Australia)

Title: Learning nonlinear input-output maps with dissipative quantum systems

Abstract: In this seminar, I will describe a theoretical framework for learning of nonlinear input-output maps with fading memory by dissipative quantum systems, as a quantum counterpart of the theory of approximating such maps using classical dynamical systems. Such a theory can provide the foundation for harnessing of dissipative quantum systems for applications such as nonlinear systems modelling and signal processing. In particular, the theory identifies the properties required for a class of dissipative quantum systems to be universal, in the sense that any input-output map with fading memory can be approximated arbitrarily closely by an element of this class. We then introduce an example class of dissipative quantum systems that is provably universal. Some numerical examples will be presented.

The seminar is based on joint work with J. Chen (Quantum Information Processing, 18(7):198 (2019)) 

Biography: Dr Hendra I. Nurdin received the bachelor's degree in electrical engineering from Institut Teknologi Bandung, Bandung, Indonesia, the master's degree in engineering mathematics from the University of Twente, Enschede, the Netherlands, and the Ph.D. degree in engineering and information science from the Australian National University (ANU), Canberra, ACT, Australia, in 2007. From 2007 to 2011, he was a Research Fellow and then an Australian Research Council APD Fellow with the ANU before joining the University of New South Wales, Australia, in 2012. His research interests include quantum systems, quantum feedback control, stochastic systems and stochastic control, and applications of control theory to microgrids and renewable energy systems. He  is a coauthor, with Naoki Yamamoto, of the Springer research monograph “Linear dynamical quantum systems: Analysis, synthesis, and control” (2017).

Séminaire d'Automatique du plateau de Saclay

Séminaire le 29 Novembre 2019, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Elena Panteley & Ubirajara F. Moreno

10:00-11:00 Elena Panteley (Director of research, CNRS, L2S, CentraleSupélec)

Title: Dynamic consensus in heterogeneous networks

Abstract: In this talk we present an analysis framework for the study of synchronization of nonlinear systems interconnected over networks described by directed graphs.  Systems may have different dynamical models or the same model with different parameters.  We introduce the concept of dynamic consensus and we characterize the synchronization behavior of the network in terms of the stability properties of two interconnected dynamical systems that evolve in orthogonal spaces: one corresponds to the synchronization error dynamics and the second to the so-called emergent dynamics. Such an approach allows not only to formulate conditions for practical asymptotic synchronization of heterogeneous networked systems, but also to characterize their collective behavior.  In the end we present two extensions of the proposed approach to the analysis of networks of Stuart-Landau oscillators.

Biography. Elena Panteley was born in Leningrad, USSR. She received the M.Sc. and Ph.D. degrees in applied mathematics from the State University of St. Petersburg, St. Petersburg, Russia. She is a Director of Research (DR 2) of the French National Centre of Scientific Research (CNRS), Laboratoire de Signaux et Systemes, Yvette, France. From 1986 to 1998, she held a research position with the Institute for Problem of Mechanical Engineering, the Academy of Science of Russia, St. Petersburg. During 1998, she was an Associate Researcher with the Center for Control Engineering and Computation, University of California at Santa Barbara. During 1999, she was with the INRIA Rhone Alpes, Monbonnot, France. She is coauthor of over 90 scientific articles and book chapters. Her research interests include stability of nonlinear time-varying systems, control of electromechanical systems, nonlinear, and robust control.

11:00-12:00 Ubirajara F. Moreno (Professor, Department of Automation and Systems (DAS), Federal University of Santa Catarina (UFSC))

Title: Modelling and Simulation of Online Social Networks

Abstract: From the first Internet-based social networking applications designed to get people in contact and make friends, to social networks made up of over 2 billion users, the combination of communication networks, portable devices and AI has changed the way People interact and make decisions. The extent of this influence could be observed not only in marketing, and social behavior but also in referendums and elections, leading to distortion of democratic manifestations and representations. The aim of this presentation is show that an approach based on Systems & Control could be applied to modelling and analisys of the behavior of social networks, as well as, to assess some regulatory policies. The analysis are based on simulation of this models on small and large scale networks.

Biography: Since 2004, Ubirajara F. Moreno is a professor at the Department of Automation and Systems (DAS) at Federal University of Santa Catarina (UFSC). In the period of 2014 to 2016 he served as Director of the Campus of Blumenau from the Federal University of Santa Catarina. He participated in several national and international cooperation projects (PROCAD, BRAFITEC, CAPES / COFFECUB, ANP-PRH-34, CNPq-CNRS, CAPES / GRICES, CAPES/SIU, among others), having coordinated a project of Cooperation Brazil / Cuba: CAPES / MES, 108/2010: entitled Development of an Embedded System of Low Cost for Industrial Monitoring and Diagnosis and a cooperation project Brazil / Portugal: CAPES / FCT 353/13 entitled PICC - Integrated Controllers and Communications Project for NCS. In 2016 he was the national committee chairman of the 1st IFAC Conference on Cyber-Physical & Human Systems held in Florianópolis. Currently coordinates the BRAFITEC project, Brazil / France, entitled Franco-Brazilian Cooperation Project for the Training of Engineers in the Control and Automation Area, in partnership with CentraleSupelec, EC Nantes, UFRGS and UNICAMP, and participates in a Brazil/Norway project of international cooperation on Modeling and Control Strategies with Application in Offshore Oil and Gas Production . He participated in joint research projects with the industry in the development of monitoring systems (Petrobras, Bosch Rexroth).The research interests of prof. Ubirajara Franco Moreno are: Networked Control Systems, Cooperative Robotics, Systems Monitoring and Human Machine Interaction. From August/2019 to April/2020 he is in a sabbatical stay, at L2S, working with Françoise Lamnabhi-Lagarrigue, on Cyber-Physical and Human Systems (CPHS) interaction in Industry 4.0.

"Séminaire d'Automatique du plateau de Saclay" of iCODE

Séminaire le 25 Octobre 2019, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Antoine Girard & Sajad Naderi

10:00-11:00 Antoine Girard (L2S, Gif-Sur-Yvette, France)

Title: A Symbolic Control Approach to the Programming of Cyber-Physical Systems

Abstract: Autonomous vehicles, intelligent buildings or robots promise to transform the everyday life of our society in all its dimensions (transport, housing, industry, health, assistance to the elderly ...). These systems are examples of cyber-physical systems (CPS) resulting from the integration of computer components and physical processes. The development of these systems is often complex (due to cyber-physical interactions) and with critical safety requirements.
In this talk, I will present the first steps towards developing a framework for CPS programming that will enable fast and safe development of their functionality through a high-level programming language. The originality of the approach is to consider that programs are not intended to be executed on the digital platform made up of computer components, but on the cyber-physical platform, which additionally includes the physical part of the system. Thus, high-level programs do not specify the behavior of the computer components but directly that of the cyber-physical system. Then, an automatic synthesis tool uses a model of the physical process to generate low-level control algorithms that enforce the specified behavior.
I will introduce a high-level language for CPS directly inspired by the formalism of hybrid automata. Following the paradigm of 'correct by construction synthesis', low-level control algorithms are synthesized by symbolic control techniques. The key concept of symbolic control is that of the symbolic model, which is a dynamic finite state system, obtained by abstracting physical trajectories on a finite set of symbols. When symbolic and physical dynamics are formally linked by a behavioral relation (e.g., simulation or bisimulation), controllers synthesized for the symbolic model using discrete synthesis techniques can be refined to controllers certified for the physical system. I will provide illustrating examples from the domain of autonomous vehicles.

Biography: Antoine Girard is a senior researcher at CNRS and a member of the Laboratory of Signals and Systems. He received the Ph.D. degree in applied mathematics from Grenoble Institute of Technology, in 2004. From 2004 to 2006, he held postdoctoral positions at University of Pennsylvania and Université Grenoble-Alpes. From 2006 to 2015, he was an Assistant/Associate Professor at the Université Grenoble-Alpes. His main research interests deal with analysis and control of hybrid systems with an emphasis on computational approaches, formal methods and applications to cyber-physical systems. Antoine Girard received the George S. Axelby Outstanding Paper Award from the IEEE Control Systems Society in 2009. In 2014, he was awarded CNRS Bronze Medal. In 2015, he was appointed as a junior member of the Institut Universitaire de France (IUF). In 2016, he was awarded an ERC Consolidator Grant. In 2018, he received the first Test of Time Award from the International Conference on Hybrid Systems: Computation and Control and the European Control Award.

11:00-12:00 Sajad Naderi (Eindhoven University of Technology, The Netherlands)

Title: Model order reduction for linear time delay systems based on energy functionals

Abstract: In this talk, I first present a model order reduction approach for asymptotically stable linear time systems with point-wise delays. This approach, which can be regarded as an extension of existing balanced model order reduction techniques for linear delay-free systems, is based on energy functionals that characterize observability and controllability properties of time delay system. This type of approach provides an a priori bound on the reduction error. Moreover, the resulting reduced model is an asymptotically stable time delay system with the same delay-structure as the original model. In the second part of the presentation, I introduce an extended model order reduction technique for time delay systems. This extension is beneficial when the preservation of physical interconnection structures or uncertainties is desired.

Biography: Sajad Naderi received his MSc in control systems from the school of electrical and computer engineering at the University of Tehran, Iran. For his MSc thesis, he worked on the design and implementation of nonlinear adaptive controllers for the speed control of PMSM drives. He is currently pursuing a PhD degree within the dynamics and control group of the mechanical engineering department at Eindhoven University of Technology, The Netherlands. His PhD research focuses on model order reduction of infinite-dimensional systems, with application to managed pressure drilling automation. In the scope of this industrial project, he has spent 1.5 years of his PhD at the Norwegian company Kelda Drilling Controls in Porsgrunn, Norway.

Séminaire d'Automatique du plateau de Saclay

Séminaire le 17 Octobre 2019, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Islam Boussaada & Ludovic Sacchelli

10:00-11:00 Islam Boussaada (Inria Saclay, Equipe DISCO & L2S, Gif-Sur-Yvette)

Title: Coalescence and Splitting Mechanisms of Spectral Values and their Effect on Stability: Towards a New Framework for Reduced Complexity Pole-placement Design for Time-Delay Systems

Abstract: For linear delay-differential equations, a question of ongoing interest is to determine conditions on the equation parameters that guarantee exponential stability and stabilization of solutions. This talk starts by a review of an old design method for time-delay systems called finite pole-placement. Its advantages and limitations shall be stressed. Next, some recent results showing a link between the stable manifold and the manifold corresponding to a given multiplicity of a spectral value shall be presented, hence enabling a spectral abscissa assignment. After a motivation of the tracking of multiple spectral values for analysis/control perspectives, some existing links between Birkhoff’s interpolation problem and a result due to Pólya and Szegö on the number of quasipolynomial's roots in a horizontal strip shall be revisited. Later, hints of an analytic proof of the dominancy of the quasipolynomial's root will be presented, setting up a reduced-complexity delayed stabilizing design. Sensitivity of the control design with respect to the parameters' variation will be discussed. To overcome the sensitivity of multiple roots, an extension of the approach to real distinct pole assignment shall be presented. Finally, various reduced order examples will illustrate the applicative perspectives of the proposed control approach.

Biography: Islam Boussaada received his Master in Mathematics from University Tunis II, and an M.Sc. degree in Pure Mathematics from University Paris 7 in 2004. In December 2008, he defended his Ph.D. degree in Mathematics from University of Rouen Normandy. In June 2016, he received his HDR degree (French Habilitation) in Physics from University Paris Saclay-University Paris Sud. In 2010, IB was appointed for two years as a post-doctoral fellow in the control of time-delay systems at L2S, Supelec-CNRS-University Paris Sud. Since 2012, he has been an associate professor at IPSA and an associate researcher at MODESTY Team of L2S. Since September 2017, IB is appointed permanent researcher at DISCO Team and full professor at IPSA where he headed the Aeronautical and Aerospace Systems department from September 2017 till May 2019.
Since September 2018 untill August 2020, IB is a researcher in temporary secondment at Inria Saclay-DISCO Team. His research interests belong to the qualitative theory of dynamical systems and its application in control problems. It includes stability analysis and stabilization of linear/nonlinear dynamical systems, analysis of parametric systems, analysis of delay induced dynamics, nonhyperbolic dynamics, analysis of algebraic dierential systems, control of active vibrations, dynamics of biochemical networks. IB is co-author of a monograph and co-editor of a contributed book, both published in Springer series, as well as co-author of more than 60 peer-reviewed publications. He co-organized the 4th GDRI DelSys's Workshop on Observing and Controlling Complex Dynamical Systems (November 2015), as well as the 1st GDRI Spa-Disco's workshop on Delays and Constraints in Distributed Parameters Systems (November 2017), both funded by CNRS and held at CentraleSupelec (Gif sur Yvette). At the occasion of the 20th World Congress of the International Federation of Automatic Control (IFAC) (Toulouse, July 2017), IB co-organized an invited session "Frequency domain Techniques for Time-delay Systems". At the occasion of the 13th-15th IFAC Workshop on Time-delay Systems (Istanbul 2016, Budapest 2018, Sinaia 2019), IB co-organized thematic sessions on Spectral Methods for Rightmost Roots Characterization in LTI Time-delay Systems. Since September 2018, IB is co-leading the national research group GT OSYDI of the CNRS/GDR MACS and is a deputy director of the IRS iCODE Institute of the University Paris Saclay.

11:00-12:00 Ludovic Sacchelli (Lehigh University, Pennsylvania, USA)

Title: Stabilization of non-uniformly observable system

Abstract: A common strategy in dynamic output feedback stabilization is to apply a state feedback to an observer in order to stabilize the coupled state-observer system. It is well known that global stabilizability, paired with uniform observability, implies semi-global stabilisability by dynamic output feedback. However in many generic cases, the system is not uniformly observable, and usual strategies for semi-global stabilization break down. New approaches need to be explored to resolve this issue. We will present case studies to give an outlook for the challenges raised by this problem and highlight a promising answer based on the idea of unitary embeddings of control systems.

Biography: Ludovic Sacchelli is a visiting assistant professor in the Mathematics Department of Lehigh University, in Bethlehem, Pennsylvania. He graduated from Ecole Normale Supérieure de Cachan and received his master's degree in analysis of PDEs from Paris-Sud University in 2015. He obtained a Ph.D. in applied mathematics from Ecole Polytechnique in 2018 on the topic of sub-Riemannian geometry. Ludovic spent the following year as a postdoc in the Electrical Engineering Department of University of Toulon (LIS Lab) before departing for his current position. His research interests lie in sub-Riemannian geometry, control theory and observability.

Control of automated vehicles and their influence on traffic

Séminaire le 3 Octobre 2019, 14h00 à CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S
Karl H. Johansson

Abstract: Automated and connected road vehicles enable large-scale control and optimisation of the transport system with the potential to radically improve fuel efficiency, decrease the environmental footprint, and enhance safety. In this talk we will focus on automated heavy-duty vehicle platooning, which is currently being implemented and evaluated by several truck manufacturers world-wide. We will discuss how to deploy feedback control of individual platoons utilising the cellular communication infrastructure and how such controlled platoons can be used improve overall traffic conditions. It will be argued that the average total variation of traffic density can be reduced and thereby creating incentives for platooning beyond fuel savings and driver support. Extensive experiments done on European highways will illustrate system performance and safety requirements. The presentation will be based on joint work with collaborators at KTH and at the truck manufacturers Scania and Volvo.

Biography: Karl H. Johansson is Professor at the School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology. He received MSc and PhD degrees from Lund University. He has held visiting positions at UC Berkeley, Caltech, NTU, HKUST Institute of Advanced Studies, and NTNU. His research interests are in networked control systems, cyber-physical systems, and applications in transportation, energy, and automation networks. He has received several best paper awards and other distinctions from IEEE, IFAC and ACM. He has been awarded Distinguished Professor with the Swedish Research Council and Wallenberg Scholar with the Knut and Alice Wallenberg Foundation. He has received the Future Research Leader Award from the Swedish Foundation for Strategic Research and the triennial Young Author Prize from IFAC. He is Fellow of the IEEE and the Royal Swedish Academy of Engineering Sciences, and he is IEEE Distinguished Lecturer.

Control of automated vehicles and their influence on traffic

Séminaire le 3 Octobre 2019, 14h00 à CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S
Karl H. Johansson

Abstract: Automated and connected road vehicles enable large-scale control and optimisation of the transport system with the potential to radically improve fuel efficiency, decrease the environmental footprint, and enhance safety. In this talk we will focus on automated heavy-duty vehicle platooning, which is currently being implemented and evaluated by several truck manufacturers world-wide. We will discuss how to deploy feedback control of individual platoons utilising the cellular communication infrastructure and how such controlled platoons can be used improve overall traffic conditions. It will be argued that the average total variation of traffic density can be reduced and thereby creating incentives for platooning beyond fuel savings and driver support. Extensive experiments done on European highways will illustrate system performance and safety requirements. The presentation will be based on joint work with collaborators at KTH and at the truck manufacturers Scania and Volvo.

Biography: Karl H. Johansson is Professor at the School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology. He received MSc and PhD degrees from Lund University. He has held visiting positions at UC Berkeley, Caltech, NTU, HKUST Institute of Advanced Studies, and NTNU. His research interests are in networked control systems, cyber-physical systems, and applications in transportation, energy, and automation networks. He has received several best paper awards and other distinctions from IEEE, IFAC and ACM. He has been awarded Distinguished Professor with the Swedish Research Council and Wallenberg Scholar with the Knut and Alice Wallenberg Foundation. He has received the Future Research Leader Award from the Swedish Foundation for Strategic Research and the triennial Young Author Prize from IFAC. He is Fellow of the IEEE and the Royal Swedish Academy of Engineering Sciences, and he is IEEE Distinguished Lecturer.

Imaging with Electromagnetic Waves and Fields, from Eddy Current to Microwave

Séminaire le 4 Juillet 2019, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Yu Zhong

Abstract: Imaging problems with electromagnetic waves and fields are of great interest due to non-intrusive inspection enabled by such imaging methods. In this talk, two major imaging methods in two different frequency bands will mainly be discussed, eddy current imaging at low frequency and microwave imaging at resonant frequency regime. As these two types of problems are nonlinear and unstable, from mathematical perspectives, one will show, in each, how these difficulties are specifically handled.

In the first part, the physical mechanism of eddy current inspection will be discussed, followed by a full description of an inspection system. An imaging method that could work with the measured eddy current signals will then be proposed. It includes a forward model for eddy current interactions with defects, an experimental signal calibration model, a defect model for inversion, and an optimization scheme. It will be shown how these bricks work together to provide imaging results from phaseless eddy current signals.
In the second part, the highly nonlinear inverse scattering problems (ISPs) will be shown how to be efficiently tackled by the recently proposed contraction integral equation for inversion (CIE-I), in both three-dimensional (3-D) problems and 2-D problems with phaseless data. With the CIE-I, the non-linearity of ISPs is largely remedied by suppressing multiple scattering effects within the inversions, without compromising the physical model accuracy. This is very important when handling the computationally costly 3-D ISPs, since  each iteration of inversion might cost many computational resources. Compared to conventional imaging methods with the well-known Lippmann-Schwinger integral equation (LSIE), this new imaging method with CIE-I shows much better performance when tackling both 3-D ISPs and 2-D ones with phaseless data, w.r.t. resolvability against non-linearity and convergence speed.


Biography: Yu Zhong received the B.E. and M.E. degrees in electronic engineering from Zhejiang University, Hangzhou, China, in 2003 and 2006, respectively, and the Ph.D. degree in electrical and computer engineering from the National University of Singapore, Singapore, in 2010. He was a Research Engineer and a Fellow with the National University of Singapore, from 2009 to 2013, then involved in a French-Singaporean MERLION Cooperative Program. Since 2014, he has been a Scientist with the Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research, Singapore. He has been regularly invited to the Laboratoire des Signaux et Systèmes (L2S), Gif-sur-Yvette, France, as Senior Scientific Expert once per year since 2012. He was invited as a Visiting Professor to University of Trento, Italy, in June 2018. His current research interests include numerical methods for inverse problems associated with waves and fields, electromagnetic and acoustic modeling with complex materials, and non-destructive testing.

Probabilité et Mécanique Quantique: Loi de Bayes, Estimation de paramètres

Séminaire le 9 Mai 2019, 11h00 à CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S
Clément Pellegrini

Abstract. Dans cet exposé nous reviendrons sur le modèle mathématique décrivant l'expérience de Serge Haroche: "quantum non-demolition experiment" pour lequel il a reçu le prix Nobel de Physique. A travers ce modèle nous verrons comment la loi de Bayes apparait naturellement dans le contexte de la mécanique quantique: notamment dans le contexte des mesures indirectes. Nous verrons ensuite comment nous pouvons faire de l'estimation de paramètres sur ces modèles et comment on peut parler de stabilité du filtre sous-jacent. Cet exposé ne demande pas de prérequis de mécanique quantique, nous introduirons les concepts de base nécessaires.

Bio. Clément Pellegrini, Maitre de conférences à l'université Paul Sabatier Toulouse III depuis 2009
Post-doctorat sous la direction de Francesco Petrucionne à Durban 2008-2009
Doctorat sous la direction de Stéphane Attal à l'université Claude Bernard Lyon: thèse soutenue en 2008

S³ seminar : Non-negative orthogonal greedy algorithms for sparse approximation

Séminaire le 8 Décembre 2017, 10h30 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40

Sparse approximation under non-negativity constraints naturally arises in several applications. Many sparse solvers can be directly extended to the non-negative setting. It is not the case of Orthogonal Matching Pursuit (OMP), a well-known sparse solver, which gradually updates the sparse solution support by selecting a new dictionary atom at each iteration. When dealing with non-negative constraints, the orthogonal projection computed at each OMP iteration is replaced by a non-negative least-squares (NNLS) subproblem whose solution is not explicit. Therefore, the usual recursive (fast) implementations of OMP do not apply. A Non-negative version of OMP (NNOMP) was proposed in the recent literature together with several variations. In my talk, I will first recall the principle of greedy algorithms, in particular NNOMP, and then, I will introduce our proposed improvements, based on the use of the active-set algorithm to address the NNLS subproblems. The structure of the active-set algorithm is indeed intrisically greedy. Moreover, the active-set algorithm can be called with a warm start, allowing us to fastly solve the NNLS subproblems. (Joint work with Charles Soussen (L2S), Jérôme Idier (LS2N), and El-Hadi Djermoune (CRAN).)

Séminaire d'Automatique du Plateau de Saclay : Necessary and sufficient condition for exponential synchronization of nonlinear systems

Séminaire le 30 Novembre 2017, 11h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Vincent Andrieu (CNRS Researcher, LAGEP-CNRS, Université de Lyon 1, France)

Based on recent works on transverse exponential stability, some necessary and sufficient conditions for the existence of a (locally) exponential synchronizer are established. We show that the existence of a structured synchronizer is equivalent to the existence of a stabilizer for the individual linearized systems (on the synchronization manifold) by a linear state feedback. This, in turns, is also equivalent to the existence of a symmetric covariant tensor field which satisfies a kind of Lyapunov inequality. Based on this property, we provide the construction of such synchronizer. We discuss then the possibility to achieve global synchronization.

Bio. Vincent Andrieu graduated in applied mathematics from “INSA de Rouen”, France, in 2001. After working in ONERA (French aerospace research company), he obtained a PhD degree from “Ecole des Mines de Paris” in 2005. In 2006, he had a research appointment at the Control and Power Group, Dept. EEE, Imperial College London. In 2008, he joined the CNRS-LAAS lab in Toulouse, France, as a “CNRS-chargé de recherche”. Since 2010, he has been working in LAGEP-CNRS, Université de Lyon 1, France. In 2014, he joined the functional analysis group from Bergische Universitäte Wuppertal in Germany, for two sabbatical years. His main research interests are in the feedback stabilization of controlled dynamical nonlinear systems and state estimation problems. He is also interested in practical application of these theoretical problems, and especially in the field of aeronautics and chemical engineering.

Séminaire d'Automatique du Plateau de Saclay : Observer design for nonlinear systems

Séminaire le 30 Novembre 2017, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Pauline Bernard (PhD, PSL Reserch University, Systems and Control Center, MINES ParisTech)

Unlike for linear systems, no systematic method exists for the design of observers for nonlinear systems. However, observer design may be more or less straightforward depending on the coordinates we choose to express the system dynamics. In particular, some specific structures, called normal forms, have been identified for allowing a direct and easier observer construction. It follows that a common way of addressing the problem consists in looking for a reversible change of coordinates transforming the expression of the system dynamics into one of those normal forms, design an observer in those coordinates, and finally deduce an estimate of the system state in the initial coordinates via inversion of the transformation. This talk gives contributions to each of those three steps.
First, we show the interest of a new triangular normal form with continuous (non-Lipschitz) nonlinearities. Indeed, we have noticed that systems which are observable for any input but with an order of differential observability larger than the system dimension, may not be transformable into the standard Lipschitz triangular form, but rather into an "only  continuous" triangular form. In this case, the famous high gain observer no longer is sufficient, and we propose to use  homogeneous observers instead.
Another canonical form of interest is the Hurwitz linear form which admits a trivial observer. The question of transforming a nonlinear system into such a form has only been addressed for autonomous systems with the so-called Lunberger or Kazantzis-Kravaris observers. This design consists in solving a PDE and we show here how it can be extended to time-varying/controlled systems.
As for the inversion of the transformation, this step is far from trivial in practice, in particular when the domain and image spaces have different dimensions. When no explicit expression for a global inverse is available, numerical inversion usually relies on the resolution of a minimization problem with a heavy computational cost. That is why we have developed a method to avoid the explicit inversion of the transformation by bringing the observer dynamics (expressed in the canonical form coordinates) back into the initial system coordinates. This is done by dynamic extension, i.e. by adding some new coordinates to the system and transforming an injective immersion into a surjective diffeomorphism.

Bio. Pauline Bernard graduated from MINES ParisTech in 2014 with a Master degree in Applied Mathematics and Automatic Control. In 2017, she obtained her Ph.D. in Mathematics and Automatic Control at PSL Reserch University, prepared at the Systems and Control Center, MINES ParisTech under the supervision of Laurent Praly and Vincent Andrieu.

Séminaire d’Automatique du plateau de Saclay : Stability analysis of discrete-time infinite-horizon control with discounted cost.

Séminaire le 27 Novembre 2017, 15h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Romain Postoyan (CNRS researcher, Centre de Recherche en Automatique de Nancy)

We analyse the stability of general nonlinear discrete-time systems controlled by an optimal sequence of inputs that minimizes an infinite-horizon discounted cost. First, assumptions related to the controllability of the system and its detectability with respect to the stage cost are made. Uniform semiglobal and practical stability of the closed-loop system is then established, where the adjustable parameter is the discount factor. Stronger stability properties are thereupon guaranteed by gradually strengthening the assumptions. Next, we show that the Lyapunov function used to prove stability is continuous under additional conditions, implying that stability has a certain amount of nominal robustness. The presented approach is flexible and we show that robust stability can still be guaranteed when the sequence of inputs applied to the system is no longer optimal but near-optimal. We also analyse stability for cost functions in which the importance of the stage cost increases with time, opposite to discounting. Finally, we exploit stability to derive new relationships between the optimal value functions of the discounted and undiscounted problems, when the latter is well-defined.

This is a joint work with Lucian Busoniu (TU Cluj, Romania), D. Nesic (University of Melbourne, Australia) and J. Daafouz (CRAN, Université de Lorraine).

Bio. Romain Postoyan received the master degree (``diplôme d'ingénieur'') in Electrical and Control Engineering from ENSEEIHT (France) in 2005. He obtained the M.Sc. by Research in Control Theory & Application from Coventry University (United Kingdom) in 2006 and the Ph.D. in Control Theory from Université Paris-Sud (France) in 2009. In 2010, he was a research assistant at the University of Melbourne (Australia). Since 2011, he is a CNRS researcher at the Centre de Recherche en Automatique de Nancy (France). He serves as an Associate Editor at the Conference Editorial Board of the IEEE Control Systems Society and for the journals: Automatica, IEEE Control Systems Letters, and IMA Journal of Mathematical Control and Information.

Séminaire d'Automatique du Plateau de Saclay : Message-passing computation of the harmonic influence in social networks

Séminaire le 21 Novembre 2017, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Paolo Frasca (CNRS Researcher, NeCS team, GIPSA-lab, Grenoble, France).

The harmonic influence is a measure of node influence in social networks that quantifies the ability of a leader node to alter the average opinion of the network, acting against an adversary field node. The definition of harmonic influence assumes linear interactions between the nodes described by an undirected weighted graph; its computation requires to solve, for every node, a discrete Dirichlet problem associated to a grounded Laplacian. In this talk, I will describe a message-passing distributed algorithm that concurrently computes the harmonic influence of all nodes and provide a convergence analysis for it. The algorithm converges asymptotically, under the only assumption of the interaction Laplacian being symmetric. However, the convergence value does not in general coincide with the harmonic influence: simulations show that when the network has a larger number of cycles, the algorithm becomes slower and less accurate, but nevertheless provides a useful approximation. Simulations also indicate that the symmetry condition is not necessary for convergence and that performance (both in terms of speed and asymptotical error) scales well in the number of nodes of the graph.

Bio. Paolo Frasca received the Ph.D. degree in Mathematics for Engineering Sciences from Politecnico di Torino, Torino, Italy, in 2009. Between 2008 and 2013, he has held research and visiting positions at the University of California, Santa Barbara (USA), at the IAC-CNR (Rome, Italy), at the University of Salerno (Italy), and at the Politecnico di Torino. From 2013 to 2016, he has been an Assistant Professor at the University of Twente in Enschede, the Netherlands. In October 2016 he joined the CNRS as Researcher: he is currently affiliated with GIPSA-lab in Grenoble, France.
His research interests are in the theory of network systems and cyber-physical systems, with applications to robotic, sensor, infrastructural, and social networks. On these topics, Dr. Frasca has (co)authored more than fifty journal and conference papers and has given invited talks at several international institutions and events, including the 2015 SICE International Symposium on Control Systems in Tokyo. He is a recipient of the 2013 SIAG/CST Best SICON Paper Prize. He has been a visiting professor at the LAAS, Toulouse, France in 2016 and at the University of Cagliari, Italy in 2017.
Dr. Frasca has served as Associate Editor of several international conferences, including IEEE CDC, ACC, ECC, MTNS, IFAC NecSys, and is currently serving as Associate Editor for the International Journal of Robust and Nonlinear Control, the Asian Journal of Control, and the IEEE Control Systems Letters.

Séminaire d'Automatique du Plateau de Saclay : Distributed Abstractions for Multi-Agent Systems Based on Robust Multi-Agent Control

Séminaire le 7 Novembre 2017, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S
Dimitris Boskos (Postdoctoral researcher, Department of Automatic Control, School of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden)

High level task planning for multi-agent systems constitutes a research area which has gained an emerging attention during the last two decades. While the agents' coordination is in principle based on the design of continuous interaction protocols, the derivation of high level plans requires a discrete representation of their dynamic behavior, also called abstraction, in order to leverage algorithmic tools for the plan synthesis.    

In this talk we discuss the derivation of such abstractions for agents with continuous dynamics, comprising of feedback interconnection terms and additive bounded inputs, which provide the ability for high level planning under the coupled constraints. These dynamics are also motivated by multi-agent coordination protocols which are robust with respect to the additional input part. We will present such a cooperative control framework, which guarantees that network connectivity is robustly maintained with respect to bounded additive inputs. Furthermore, a modification of the feedback design ensures forward invariance of the agents' trajectories inside a convex workspace, without affecting the inputs' robustness bounds.

In order to derive the agents' distributed symbolic models, we determine space-time discretizations which establish that each agent's abstraction has at least one outgoing transition from every discrete state. The symbolic model of each agent is based on the knowledge of its neighbors' discrete positions and the transitions are performed through hybrid control laws, which can drive the agent to its possible successor states. As an extension of these results we also consider a varying degree of decentralization and build each abstract model based on discrete information up to a tunable distance in the communication graph. Finally, we discuss the derivation of online  abstractions, by discretizing over approximations of the agents' reachable sets over a bounded time horizon.

Bio. Dimitris Boskos was born in Athens, Greece in 1981. He has received the Diploma in Mechanical Engineering from the National Technical University of Athens (NTUA), Greece, in 2005, the M.Sc. in Applied Mathematics from the NTUA in 2008 and the Ph.D. in Applied mathematics from the NTUA in 2014. Since August 2014, he is a Postdoctoral Researcher at the Department of Automatic Control, School of Electrical Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden. His research interests include distributed control of multi-agent systems, formal verification and observer design for nonlinear systems.

Séminaire d'Automatique du Plateau de Saclay : Optimal control problems with oscillations, concentrations, and discontinuities.

Séminaire le 19 Octobre 2017, 11h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Didier Henrion (CNRS Senior Researcher, LAAS-CNRS & Professor, Faculty of Electrical Engineering, Czech Technical University)

Optimal control problems with oscillation (chattering controls) and concentration (impulsive controls) can have integral performance criteria such that concentration of the control signal occurs at a discontinuity of the state signal. Techniques from functional analysis (extensions of DiPerna-Majda measures from the partial differential equations literature) are developed to give a precise meaning of the integral cost and to allow for the sound application of numerical methods. We show how this can be achieved for the Lasserre hierarchy of semidefinite programming relaxations. This includes in particular the use of compactification techniques allowing for unbounded time, state and control.

Bio. Didier Henrion is a CNRS Senior Researcher at LAAS, an engineering laboratory in Toulouse, France. He is also a Professor at the Faculty of Electrical Engineering at the Czech Technical University in Prague, Czechia. Since 1994 he has been developing constructive tools for addressing mathematical problems arising from systems control and optimization.

Séminaire d'Automatique du plateau de Saclay : Stabilization of nonlinear infinite-dimensional systems subject to saturations

Séminaire le 19 Octobre 2017, 10h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Swann Marx (Postdoctoral researcher, LAAS-CNRS)

This presentation provides contributions in stabilization methods for nonlinear dynamical systems. In particular, it focuses on the analysis of infinite-dimensional systems subject to saturated inputs.

In the first part, we will introduce a more general class of saturations than the one known for finite-dimensional systems. When bounding a linear stabilizing feedback law with such nonlinearity, a well-posedness result together with an attractivity result will be stated for systems whose open-loop is described by (possibly nonlinear) operators generating strongly continuous semigroup of contractions. The attractivity result will be proved by using the LaSalle's Invariance Principle together with some precompactness properties. 

In the second part, a particular nonlinear partial differential equation is studied, namely the Korteweg-de Vries equation, that models long waves in water of relatively shallow depth. A control actuating on a small part of the channel will be considered. This control will be modified with two different types of saturations. The attractivity result will be proved by using Lyapunov argument and a contradiction argument. Finally, the results will be illustrated with some numerical simulations.

Bio. Swann Marx graduated in 2014 from "Ecole Supérieure de Cachan", France. He got his Ph.D. in the Departement of Automatic at the GIPSA-lab, in Grenoble, France. He is currently a postdoctoral researcher at the LAAS-CNRS, in Toulouse, France. His main research interests are stabilization of partial differential equations with constrained inputs, output feedback stabilization and optimal control of nonlinear partial differential equations.

Inertia in inverter-dominated power networks.

Séminaire le 13 Octobre 2017, 15h00 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Pooya MONSHIZADEH (PhD student at University of Groningen, The Netherlands)

Along with the emergence of the renewable energy sources in power networks, and consequently the increasing usage of power converters, new issues and concerns regarding stability of the grid have arisen. Recently, the problem of low inertia of inverter dominated systems has been extensively investigated. In this talk, I address the problem of stability and frequency regulation of a recently proposed inverter. In this type of inverter, the DC-side capacitor emulates the inertia of a synchronous generator. First, I discuss remodeling the dynamics from the electrical power perspective. Using this model, it can be shown that the system is stable if connected to a constant power load, and the frequency can be regulated by a suitable choice of the controller. I elaborate the analysis of the stability of a network of inverters with capacitive inertia, and show that frequency regulation can be achieved by using an
appropriate controller design.

Séminaire d’Automatique du plateau de Saclay : Non-Markovian Quantum Feedback Networks

Séminaire le 30 Juin 2017, 11h00 à INRIA Paris (Salle A115)
John Gough (Institute of Mathematics and Physics, Aberystwyth University)

We will recall the theory of Markovian Quantum feedback Networks, and explain some recent models with non-Markovian behaviour coming from physical requirements.

The concept of a controlled flow of a dynamical system, especially when the controlling process feeds information back about the system, is of central importance in control engineering, and we build on the ideas of by Bouten and van Handel to develop a general theory of quantum feedback. We elucidate the relationship between the controlling processes Z and the measured process Y, and to this end make a distinction between what we call the input picture and the output picture.

The theory is general enough to include a modulating filter which processes the measurement readout Y before returning to the system. This opens up the prospect of applying very general engineering feedback control techniques to open quantum systems in a systematic manner, and we consider a number of specific modulating filter problems.


Bio. John E. Gough was born in Drogheda, Ireland, in 1967. He received the B.Sc. and M.Sc. in Mathematical Sciences and the Ph.D. degree in Mathematical Physics from the National University of Ireland, Dublin, in 1987, 1988 and 1992 respectively. He was reader in Mathematical Physics at the Department of Mathematics and Computing, Nottingham-Trent University, up until 2007. He then joined the Institute of Mathematics and Physics at Aberystwyth University as established chair of Mathematics. He has held visiting positions at the University of Rome Tor Vergata, EPFL Lausanne, UC Santa Barbara and the Hong Kong Polytechnic University. His research interests include quantum probability, measurement and control of open quantum dynamical systems, and quantum feedback networks.