AN APPROACH TO NONLINEAR DISCRETE-TIME
H$_\infty$-CONTROL*

H. Guillard*, S. Monaco** and D. Normand-Cyrot*

Abstract

Following recent works proposed in the continuous-time context concerning the nonlinear equivalent of the H$_\infty$-control problem and its connection with game theory and Isaacs equation, the present paper sets and studies the same problem in the discrete-time context. A digital static feedback law achieving closed-loop stability and disturbance attenuation is firstly designed under full information assumption and then by making use of an observer.

1 Introduction

H$_\infty$-control theory gives an answer to a major control problem, which is to conceive controllers not designed for a single plant under known inputs, but for a class of plants under unknown inputs which can be disturbances, for instance.

H$_\infty$-control, initiated by Zames [22], only arose in the beginning of the eighties.

Initially designed in the frequency-domain, the H$_\infty$-controller goal was to minimize the maximal norm, i.e. the H$_\infty$-norm of an input-output operator linking, for example, an error to an unknown disturbance; the maximum being to be taken over the whole class of disturbances. The first solutions were thus elaborated in the frequency-domain [7], [8]. Later works on a characterization of H$_\infty$-controllers in the time domain showed that a certain Riccati equation was playing an essential role in the resolution of the linear problem [6], [9], [11].

In parallel, in [1], [16], [17], [21], setting the H$_\infty$-control problem as an optimization one, a natural link with differential linear quadratic game theory is proposed.

In particular, in this context, new developments in the nonlinear continuous time case are made possible [10], [12], [14]. In these recent works the existence of a controller solving the problem is shown to be related to the existence of a solution of a particular type of Hamilton-Jacobi equation, known as Isaacs equation. Moreover a solution to such an equation exists under certain assumptions [14], [19].

The present paper deals with the nonlinear discrete-time H$_\infty$-problem. We prove that the existence of a controller providing a solution is related to the existence of a solution to a discrete-time version of Isaacs equation. The solution proposed verifies some extra assumptions which are strictly related to the discrete-time context.

The classic “full-information” case is firstly solved. On this basis, sufficient conditions for the existence of a solution to the H$_\infty$-control problem via measurement feedback, using the same classic type of observer that was used in the continuous-time case [13], are proposed.

The paper is organized as follows. The problem is formulated in a discrete-time context in section 2. Section 3 deals with the “full-information” problem and we will give a solution via measurement feedback in Section 4.

An extended study of this problem where complete proofs are given can be found in [10].

2 Problem formulation

Consider a discrete-time system described by equations of the form:

\[
\begin{align*}
\dot{x}_{k+1} &= f(x_k) + g_1(x_k)u_k + g_2(x_k)w_k \\
z_k &= h_1(x_k) + k_11(x_k)w_k + k_12(x_k)u_k \\
y_k &= h_2(x_k) + k_21(x_k)w_k + k_22(x_k)u_k
\end{align*}
\]

(2.1)

The input variables are denoted by $w \in \mathbb{R}^{m_1}$ (exogeneous input) and $u \in \mathbb{R}^{m_2}$ (control input). The output variables are denoted by $z \in \mathbb{R}^p$ (tracking error) and $y \in \mathbb{R}^q$ (measured variables). The mappings $f(x)$, $g_1(x)$, $g_2(x)$, $h_1(x)$, $h_2(x)$, $k_11(x)$, $k_12(x)$ and $k_21(x)$ **Research supported in part by grants from MURST in Italy and MEN in France**
and \(k_{21}(x) \) are smooth mappings defined in a neighbourhood of the origin in \(\mathbb{R}^n \).

We assume the existence of an equilibrium \(x_0 = 0 \), i.e. \(f(0) = 0 \), and providing a suitable change of coordinates, we assume that \(h_1(0) = 0 \) and \(h_2(0) = 0 \).

Consider a controller described by equations of the form:

\[
\begin{align*}
\theta_{k+1} &= p(\theta_k, y_k) \\
u_k &= q(\theta_k)
\end{align*}
\]

where we assume that \(\theta \) is defined in a neighbourhood of the origin in \(\mathbb{R}^m \), \(p(\theta, y) \) and \(q(\theta) \) are \(C^k \) functions (for some \(k \geq 1 \)).

The purpose of this controller is to provide:

- Local asymptotic stability of the equilibrium \((x, \theta) = (0,0)\).
- Disturbance attenuation in the sense of satisfying the inequality:

\[
\sum_{k=0}^{N} z_k^T z_k \leq \gamma^2 \sum_{k=0}^{N} w_k^T w_k \quad \forall N \in \mathbb{N}
\]

for every sequence \(w = (w_0, \ldots, w_N) \) such that the resulting trajectory remains in a neighbourhood of \(x = 0 \).

The approach here chosen, has been motivated by several developments made in nonlinear continuous-time and linear discrete-time contexts, relying on game theory (see [1], [12], [21]).

The idea is to associate with the \(H_\infty \) discrete-time problem a two-players, zero-sum, difference game:

\[
x_{k+1} = f(x_k) + g_1(x_k)u_k + g_2(x_k)w_k
\]

of fixed duration \(k = 0, \ldots, N \), with value functional

\[
J_N(u, w) = \sum_{k=0}^{N} z^T (x_k, u_k)z(x_k, u_k) - \gamma^2 w_k^T w_k
\]

where \(u \) and \(w \) denote the sequences \((u_k)_{k=0}^{N}\) and \((w_k)_{k=0}^{N} \). Moreover we note \(z(x_k, u_k) = h_1(x_k) + k_{12}(x_k)u_k \).

In our setting exogeneous sequence \(w \) stands for the maximizing player, while control sequence \(u \) stands for the minimizing player whose goal is to achieve (2.3). This kind of situation is studied in [2], p. 254, where the following solution is given:

For a two-players, zero-sum, discrete-time dynamic game of fixed duration \(k = 0, \ldots, N \), the set of strategies \((w^*_k(x), u^*_k(x))\) provide a feedback saddle point solution (i.e., \(J_N(u^*, w^*) \leq J_N(u, w^*) \leq J_N(u^*, w^*) \)) if and only if there exists a function \(V_N(.) : \mathbb{R}^n \rightarrow \mathbb{R} \) such that the following recursive equation is satisfied:

\[
V_N(x) = \min_{w} \max_{u} \left[V_{N+1}(f(x) + g_1(x)w + g_2(x)u) + \gamma^2 w^T w \right]
\]

Equation (2.4) is a discrete-time equivalent of Isaacs equation.

Since we are interested in finding a time invariant control law, we consider only one function \(V(.) : \mathbb{R}^n \rightarrow \mathbb{R} \). Thus, Isaacs equation can be written in the form:

\[
V(x) = \min_{w} \max_{u} \left[V(f(x) + g_1(x)w + g_2(x)u) + \gamma^2 w^T w \right]
\]

Moreover, we will not discuss Isaacs condition in the sequel (i.e. interchangeability of operations max and min), because we do not need to ensure that the couple \((w^*(x), u^*(x))\) provides a saddle point solution.

In order to simplify the forthcoming developments, we assume that the mappings characterizing plant (2.1) satisfy the classic assumptions (see [14] for example):

\[
k_{11}(x) = 0 \quad k_{12}^T(x)k_{12}(x) = I \quad k_{12}^T(x)h_1(x) = 0
\]

We will first deal with the "full information" problem, where both state \((x_k)_{k \in \mathbb{N}}\) and exogeneous input \((u_k)_{k \in \mathbb{N}}\) are available for measurement.

3 "Full information" problem

As a result of the considered hypotheses, system (2.1) is now described by the following equations:

\[
\begin{align*}
x_{k+1} &= f(x_k) + G(x_k)u_k \\
\dot{x}_k &= h_1(x_k) + k_{12}(x_k)u_k \\
y_k &= [x_k]
\end{align*}
\]

170
where \(G(x) = [g_1(x)g_2(x)] \).

Theorem 1 provides a solution to this particular case, in a function \(V(.) \) which is supposed to verify Isaacs equation (2.5), which will turn into a Hamilton-Jacobi type equation by computation of \((w^*(x), w^*(x)) \).

Let us first give a discrete-time equivalent of a basic definition about detectability (see [3], [14] in the continuous-time case), which will be used in the sequel.

Definition: Suppose \(f(0) = 0 \), \(h(0) = 0 \). The pair \(\{h, f\} \) is said to be detectable if there exists a neighbourhood \(U \) of \(0 \) such that if \(x_0 \in U \), any trajectory of \(x_{k+1} = f(x_k) \) is such that \(h(x_k) \) is defined for all \(k \in \mathbb{N} \) and verifies:

\[
h(x_k) = 0 \quad \forall k \in \mathbb{N} \quad \Rightarrow \quad \lim_{k \to \infty} (x_k) = 0
\]

Theorem 1. Suppose:

(i) \(h_1(x), f(x) \) locally detectable around \(x = 0 \).

(ii) There exists a smooth positive definite function \(V(.) \), with \(V(0) = 0 \), defined in a neighbourhood of \(x = 0 \) of \(\mathbb{R}^n \), satisfying:

\[
* \quad V(f(x) + G(x)) \text{ is quadratic in } x
\]

\[
* \quad V(f(x) + G(x)) \text{ is quadratic in } x
\]

* Hamilton-Jacobi type equation:

\[
V(x) = h_1^2(x)h_1(x) + V(f(x)) - \frac{1}{4} \frac{\partial^2 V(X)}{\partial X^2} \Bigg|_{X=f(x)} G(x).
\]

\[
(R + \frac{1}{2} G^T(x) \frac{\partial^2 V(X)}{\partial X^2} \Bigg|_{X=f(x)} G(x))^{-1} G(x) \frac{\partial^2 V(X)}{\partial X^2} \Bigg|_{X=f(x)} T(x)
\]

(3.2)

for \(R \triangleq \left[\begin{array}{cc} 0 & - \gamma I \end{array} \right] \).

* There exists a non singular matrix of smooth functions, defined in a neighbourhood of \(x = 0 \),

\[
T(x) \triangleq \left[\begin{array}{cc} T_{11}(x) & 0 \\ T_{21}(x) & T_{22}(x) \end{array} \right],
\]

such that:

\[
R + \frac{1}{2} G^T(x) \frac{\partial^2 V(X)}{\partial X^2} \Bigg|_{X=f(x)} G(x) = T^T(x) J T(x)
\]

(3.3)

with \(J \triangleq \left[\begin{array}{cc} 0 & 0 \\ 0 & \gamma \end{array} \right] \).

Then, if we initialize system (3.1) in \(x_0 = 0 \), it is possible to find a controller resolving the \(H_{\infty} \)-control "full-information" problem for this system. This controller is given by:

\[
\hat{u}(x_k, w_k) = u^*(x_k) - (T_{22}(x_k))^{-1} T_{21}(x_k)(w_k - w^*(x_k))
\]

(3.3)

where

\[
\begin{bmatrix}
 w^*(x) \\
 u^*(x)
\end{bmatrix} = \frac{1}{2} \left(R + \frac{1}{2} G^T(x) \frac{\partial^2 V(X)}{\partial X^2} \Bigg|_{X=f(x)} G(x) \right)^{-1}
\]

\[
\frac{\partial V(X)}{\partial X} \Bigg|_{X=f(x)}^T
\]

(3.6)

Sketch of proof:
The basic fact consists in finding a positive definite function \(V(.) \), with \(V(0) = 0 \), such that:

\[
V(x_{k+1}) + \frac{1}{2} \gamma^2 w_k^T w_k - \gamma^2 w_k^T w_k \leq 0 \quad \forall k \in \mathbb{N}
\]

(3.7)

Summing (3.7) from \(k = 0 \) to \(k = N \), choosing \(x_0 = 0 \) and recalling the positivity of \(V(.) \), this all immediately leads to the disturbance attenuation (2.8).

To this end consider:

\[
H(x_k, w_k, u_k) = \frac{1}{2} \gamma^2 w_k^T w_k + V(x_{k+1})
\]

(3.8)

According to (2.8) and (3.2), and applying to \(V \) the Taylor expansion formula, we obtain:

\[
H(x_k, w_k, u_k) = h_1^2(x_k)h_1(x_k) + V(f(x_k))
\]

\[
+ \frac{\partial V(X)}{\partial X} \bigg|_{X=f(x_k)} G(x_k) \left[w_k \right]
\]

\[
+ \frac{1}{2} \gamma^2 w_k^T \left(R + \frac{1}{2} G^T(x) \frac{\partial^2 V(X)}{\partial X^2} \Bigg|_{X=f(x_k)} G(x_k) \right) \left[w_k \right]
\]

(3.9)

If it now easy to see that a couple \([w^*(x), u^*(x)] \) given by (3.6) is such that:

\[
\frac{\partial H(x_k, w_k, u_k)}{\partial u_k} \bigg|_{(x_k, w_k, u_k)} = 0
\]

(3.10)

(The reversibility required by the computation of such a couple is guaranteed by assumption (3.4)).

Then, applying to \(H \) the Taylor expansion formula and remembering (3.4), we can immediately check that:

\[
H(x_k, w_k, u_k) = H(x_k, w^*(x_k), u^*(x_k))
\]

\[
- \frac{1}{2} \gamma^2 w_k^T w_k - \gamma^2 w_k^T w_k \leq 0
\]

(3.11)

Choosing now \(u_0 \) as in (3.5) leads to:

\[
H(x_k, w_k, u_k(x_k)) - H(x_k, w^*(x_k), u^*(x_k)) \leq 0
\]

(3.12)

Using the fact that \(V \) verifies Hamilton-Jacobi equation (3.3), \(H(x_k, w^*(x_k), u^*(x_k)) = V(x_k) \), which is Isaacs equation (2.5), it clearly implies (3.7).

To prove stability, note that inequality (3.7) with \(w_k = 0 \forall k \in \mathbb{N} \), and definite positivity of \(V(.) \) clearly prove that \(V(.) \) is a Lyapunov function for the system.

Finally, asymptotic stability follows from local detectability of \(\{h_1(x), f(x)\} \). The reasoning involving La Salle's invariance principle is rather classic (see [12]).
Remark 1: Choosing $V(z) = z^T X z$ in (3.3) and (3.4) in a linear setting, leads to the Riccati equation and the M_1, M_2 factorization of condition (a) in Theorem 3.1 in [11]. So, in a nonlinear discrete-time context, a factorization of the form (3.4) is needed, contrary to the nonlinear continuous-time case. In fact, less restrictive assumptions than (2.6) would require also a factorization in the continuous-time problem, but not involving the function $V(.)$. (See [15]).

Remark 2: What essentially differs from the linear discrete-time case is condition (3.2), which disappears in the linear problem by choosing a quadratic function $V(z) = z^T X z$ which gives the expected results. It would be interesting to examine whether or not this quadratic condition is necessary for the resolution of the H_∞ nonlinear discrete-time problem. Note that, if $V(.)$ is a function verifying Isaacs equation (2.5), we obtain:

$$V(f(z)) + G(z)[$$: $$V((x)) = V(z) + \gamma^2 w^T(z) w(z) - u^T(z) u(z) - h^T(z) h(z)$$

This equation shows that $V(f(z)) + G(z)[$$: $$V((x)) is quadratic in $w(z)$ for every x in a neighbourhood of $z = 0$ in \mathbb{R}^n.

Remark 3: If we do not make any of the assumptions (2.6), considering:

$$H(z_k, w(z_k), u(z_k)) = h^T(z_k) h(z_k) + V(f(z_k))$$

$$(2 h^T(z_k) x_k h(z_k) + \frac{\partial V(X)}{\partial X} |_{X = f(z_k)} G(z_k)[w(z_k)]$$

$$+ [w^T(z_k) R(z_k) + \frac{1}{2} G^T(z_k) \frac{\partial V(X)}{\partial X} |_{X = f(z_k)} G(z_k)[w(z_k)]$$

where

$$R(x) \triangleq \left[\begin{array}{c}
-2 \gamma^2 I + \frac{G^T(z_k)}{2} k_{11}(x) \\
\frac{G^T(z_k)}{2} k_{12}(z) \\
\frac{G^T(z_k)}{2} k_{21}(x) \\
\frac{G^T(z_k)}{2} k_{22}(z)
\end{array} \right]$$

The same arguments of proof lead to a similar result.

Remark 4: It is possible, as it has been done in the continuous time in [14], to present these results in a discrete-time dissipative setting, since (3.7) is a dissipative inequality with supply rate $\gamma^2 w^T w_k - c^T z_k$ and storage function $V(.)$ (see [20] for concepts of dissipativity). Then, the H_∞-control problem can be solved by trying to render the closed-loop system dissipative, with storage function $V(.)$. In order to do so, instead of verifying Isaacs equation, $V(.)$ would suppose to satisfy an inequality of the type:

$$H(z_k, w^*(z_k), u^*(z_k)) \leq V(z_k)$$

In our setting, this inequality would become a Hamilton-Jacobi type inequality:

$$h^T(z_k) h(z_k) + V(f(z_k)) - V(z_k) - \frac{\partial V(X)}{4} |_{X = f(z_k)} G(z_k)$$

$$(R + \frac{1}{2} G^T(z_k) \frac{\partial V(X)}{\partial X} |_{X = f(z_k)} G(z_k)[w(z_k)]$$

$$\leq 0$$

4 Disturbance attenuation via measurement feedback

Assuming $(x_k)_{k \in \mathbb{N}}$ and the exogeneous input $(w_k)_{k \in \mathbb{N}}$ are no longer available for measurement, we consider the following system:

$$x_{k+1} = f(x_k) + G(x_k)[w_k]$$
$$z_k = h_1(x_k) + h_2(x_k) u_k$$
$$y_k = h_3(x_k) + k_21(x_k) w_k$$

In order to use our last result, we introduce an observer (see, for instance, [13]) which is an exact copy of the dynamics with a term proportional to the error introduced by such a choice. This observer is therefore described by equations of the form:

$$\theta_{k+1} = f(\theta_k) + g_1(\theta_k) u(\theta_k) + g_2(\theta_k) w(\theta_k)$$
$$M(\theta_k) [y_k - h_3(\theta_k) - k_21(\theta_k) w(\theta_k)]$$
$$u(\theta_k) = \bar{u}(\theta_k, w(\theta_k))$$

With regards to $w(\theta_k)$, which still has to be chosen, it seems reasonable, as noticed in [13], to take the worst perturbation, namely $w(\theta_k) = w^*(\theta_k)$ according to (3.8).

We are now able to state our main result, for which we will give a sketch of the proof using observer (4.2).

Theorem 2: Suppose:

(i) $(h_1(z), f(z))$ locally detectable.
(ii) There exists a smooth positive definite function $V(.)$, with $V(0) = 0$, defined in a neighbourhood of $x = 0$ in \mathbb{R}^n, satisfying the same assumptions as in Theorem 1.
(iii) There exists a $n \times p_2$ matrix of smooth functions $M(\theta)$ defined in a neighbourhood of $\theta = 0$ which locally renders the equilibrium $\theta = 0$ of the following system asymptotically stable:

$$\theta_{k+1} = f(\theta_k) + g_1(\theta_k) u(\theta_k) + g_2(\theta_k) w^*(\theta_k)$$
$$M(\theta_k) [y_k - h_3(\theta_k) - k_21(\theta_k) w^*(\theta_k)]$$

(iv) There exists a smooth positive semi-definite function $W(\cdot, \cdot)$ defined in a neighbourhood of $(x, \theta) = (0, 0)$ in $\mathbb{R}^n \times \mathbb{R}^m$, satisfying:

$$\forall W(0, \theta) > 0 \ \forall \theta \neq 0$$
$$W(f_{obs}(x, \theta) + g_{obs}(x, \theta)) is quadratic$$
$$W(x, \theta) = \bar{w}_T(x, \theta) \bar{u}(x, \theta) + f_{obs}(x, \theta)$$
$$r^T(x, \theta) R_{obs}(x, \theta)^* (x, \theta)$$
$$R_{obs}(x, \theta) < 0$$

where

$$f_{obs}(x, \theta) = \left[\begin{array}{c}
(f(\theta_k) + g_1(\theta_k) u(\theta_k) + g_2(\theta_k) w^*(\theta_k))
\end{array} \right]$$

$$M(\theta_k) [y_k - h_3(\theta_k) + k_21(\theta_k) w^*(\theta_k)]$$

$$-k_21(\theta) w^*(\theta)$$
\[
\begin{align*}
g_{obs}(x, \theta) &= \left[g_1(x) \right] M f_{23}(x) \\
R_{obs}(x, \theta) &= \left(T_{11}^{-1}(x) T_{21}(x) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial R_{obs}(x, \theta)}{\partial x} \right) T_{11}(x) - I \\
\frac{\partial^2 W(X)}{\partial X^2} \bigg|_{X=x_{fobs}(x, \theta)} g_{obs}(x, \theta) T_{11}^{-1}(x) - I \\
r^*(x, \theta) &= -\frac{1}{2} R_{obs}(x, \theta) T_{11}^{-1}(x) \left[2T_{11}(x) v(x, \theta) + \sum_{i=1}^{n} \frac{\partial R_{obs}(x, \theta)}{\partial x} T_{11}^{-1}(x) v(x, \theta) \right] \\
v(x, \theta) &= T_{22}(x) (u^*(x) - w^*(x)) \\
&= v(x, \theta), T_{11}(x) \text{ and } T_{22}(x) \text{ are defined as in Theorem 1.} \\
\text{Then, if we initialize the closed-loop system in } (x_0, \theta_0) = (0, 0), \text{ the controller resolving the } H_{\infty} \text{-control problem for system (4.1) is given by:} \\
\theta_{k+1} &= f(\theta_k) + g_1(\theta_k) w^*(\theta_k) + g_2(\theta_k) u(\theta_k) + M(\theta_k) \left[y_0 - h_2(\theta_k) - k_2(\theta_k) w^*(\theta_k) \right] \\
u(\theta_k) &= u(\theta_k, w^*(\theta_k)) \\
&\text{Sketch of proof:} \\
&\text{It is immediate to verify that after applying observer (4.2) to system (4.1), the dynamics is described by:} \\
&\begin{bmatrix} x_{k+1} \\ \theta_{k+1} \end{bmatrix} = f_{obs}(x_k, \theta_k) + g_{obs}(x_k, \theta_k) (w_k - w^*(x_k)) \\
&\text{Now, considering the function:} \\
&H_{obs}(x_k, \theta_k, r(x_k, w_k)) = v^T(x_k, \theta_k, w_k) (x_k, \theta_k, w_k) \\
&-r^T(x_k, w_k) r(x_k, w_k) + W(x_{k+1}, \theta_{k+1}) \\
&\text{where} \\
&r(x_k, w_k) = T_{11}(x_k) (w_k - w^*(x_k)) \\
v(x_k, \theta_k, w_k) = v(x_k, \theta_k) + T_{21}(x_k) T_{11}^{-1}(x_k) r(x_k, w_k) \\
&\text{According to (4.5), } H_{obs} \text{ is quadratic in } r(x_k, w_k). \text{ It is easy to verify that } r^*(x, \theta) \text{ given by (4.8) is such that:} \\
&\frac{\partial H_{obs}(x_k, \theta_k, r^*(x_k, \theta_k))}{\partial r} = 0 \\
&\text{Then, applying to } H_{obs} \text{ the Taylor expansion formula, we obtain:} \\
&H_{obs}(x_k, \theta_k, r(x_k, \theta_k)) = H_{obs}(x_k, \theta_k, r^*(x_k, \theta_k)) + (r(x_k, w_k) - r^*(x_k, \theta_k))^T R_{obs}(x_k, \theta_k) (r(x_k, w_k) - r^*(x_k, \theta_k)) \\
&\text{Define a function } U(., .) \text{ from } \mathbb{R}^n \times \mathbb{R}^n \text{ in } \mathbb{R}, \text{ as:} \\
&U(x, \theta) = V(x) + W(x, \theta) \\
&\text{Hypotheses (ii) and (iii)(4.4) of Theorem 2 show that } U(x, \theta) > 0. \text{ Recalling (3.8), (4.9) and according to the fact that } W \text{ verifies:} \\
&W(x_k, \theta_k) = H_{obs}(x_k, \theta_k, r^*(x_k, \theta_k)) \\
&\text{which is nothing but 4.6, we can easily compute, taking } w_k = 0 \text{ for all } k \text{ in the formula:} \\
&U(x_{k+1}, \theta_{k+1}) - U(x_k, \theta_k) = -||h_1(x_k)||^2 - ||w_k, w^*(\theta_k)||^2 \\
&+ (r(x_k, w_k) - r^*(x_k, \theta_k))^T R_{obs}(x_k, \theta_k) (r(x_k, w_k) - r^*(x_k, \theta_k)) \\
&\text{Remembering (4.7), this clearly shows that } U \text{ is a Lyapunov function for the system. For asymptotic stability, we proceed as in the proof of Theorem 1, using local detectability of } (h_1(x), f(x)), \text{ (4.3), a well-known property of cascade systems (see [18]) and La Salle’s invariance principle.} \\
&\text{Finally, in order to prove disturbance attenuation, note that if we do not take } w_k = 0 \text{ for all } k, (4.10) \text{ becomes:} \\
&U(x_{k+1}, \theta_{k+1}) - U(x_k, \theta_k) = -||h_1(x_k)||^2 \\
&-||w_k, w^*(\theta_k)||^2 \\
&+ (r(x_k, w_k) - r^*(x_k, \theta_k))^T R_{obs}(x_k, \theta_k) (r(x_k, w_k) - r^*(x_k, \theta_k)) \\
&\text{Summing this last inequality from } k = 0 \text{ to } k = N, \text{ using (4.7), the positiveness of } U(., .) \text{ and taking } (x_0, \theta_0) = (0, 0) \text{ immediately leads to the desired disturbance attenuation (2.3).} \\
&\triangle \\
\end{align*}
\]

5 Conclusions

In this preliminary paper, we have presented sufficient conditions for the existence of a static control law which solves the H_{∞}-control problem for a nonlinear discrete-time affine system satisfying some classic assumptions. Some of the results concerning nonlinear H_{∞}-control set in the continuous-time case are proposed for discrete-time systems and difference game theory. The analogies but also the difficulties with respect to the continuous-time situation or the linear case are briefly discussed. Moreover, pursuing the study, one can also easily set the nonlinear discrete-time H_{∞}-control problem in a dissipative context.

Before sending the final version of this paper, the authors became aware of a work from C. Byrnes and W. Lin (see [4]) where nonlinear H_{∞}-control problem in discrete-time via state and full information feedback is solved without quadraticity requirement.

References

