Coded Caching in Wireless Networks

Séminaire le 19 Mai 2017, 09h30 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Meixia Tao

The global mobile data traffic has been shifting from voice and messages to rich content distributions, such as video streaming and application downloads. These contents are typically produced ahead of transmission and can be requested by multiple users though at possibly different times. By prefetching popular contents during off-peak times at the edge of wireless networks, such as small base stations, helper nodes, and user devices, wireless caching can alleviate peak-time network congestion and reduce user access latency. A fundamental question is what and how much gain can be leveraged by caching. In this talk, we shall investigate the gain of caching in two types of wireless networks. One is a general wireless interference network with arbitrary number of transmitters and arbitrary number of receives and with caches equipped at all the nodes. An information-theoretic study in terms of the storage-latency tradeoff will be presented. The other is a large-scale small-cell network where each small base station is equipped with a cache. We apply stochastic geometry to model, analyze, and optimize coded caching with performances characterized by average fractional offloaded traffic and average ergodic rate. Our study reveals several design insights of caching in practical wireless networks.

Bio: Meixia Tao received the B.S. degree from Fudan University, Shanghai, China, in 1999, and the Ph.D. degree from Hong Kong University of Science and Technology in 2003. She is currently a Professor with the Department of Electronic Engineering, Shanghai Jiao Tong University, China. Prior to that, she was a Member of Professional Staff at Hong Kong Applied Science and Technology Research Institute during 2003-2004, and a Teaching Fellow then an Assistant Professor at the Department of Electrical and Computer Engineering, National University of Singapore from 2004 to 2007. Her current research interests include content-centric wireless networks, wireless caching and multicasting, resource allocation, and interference coordination.

Dr. Tao is currently serving as a member of the Executive Editorial Committee of the IEEE Transactions on Wireless Communications and an Editor for the IEEE Transactions on Communications. Dr. Tao is the recipient of the IEEE Heinrich Hertz Award for Best Communications Letters in 2013 and the IEEE ComSoc Asia-Pacific Outstanding Young Researcher Award in 2009. She also receives the best paper awards from IEEE/CIC ICCC 2015 and IEEE WCSP 2012.