Scalable Techniques for Quantum Network Engineering

Séminaire le 13 Octobre 2016, 10h30 à CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Dr. Nikolas Tezak (Stanford University)

In the quest for creating "quantum enhanced" systems for information processing currently pursued design strategies are unlikely to scale significantly beyond a few dozen qubits. The dominant design paradigm relies on a vast overhead of external classical control. In this talk we argue for an integrated framework that treats quantum and hybrid quantum-classical systems on equal footing.
We have recently defined a Quantum Hardware Description Language (QHDL) capable of describing networks of such interconnected quantum systems. QHDL is compiled to symbolic system models by a recently developed symbolic software tool suite named QNET. We discuss an example of a recently proposed autonomous Quantum Error Correction circuit with coherently embedded control systems.
Finally, we present a model transformation capable of dividing the description of quantum states into quasi-classical coordinates living on a low-dimensional manifold coupled to a lower complexity quantum state. This approach (QMANIFOLD) is in principle exact and naturally tailored to simulating coupled quantum systems with varying degrees of dissipation.

Bio. Nikolas Tezak is a post-doc in Stanford University's Applied Physics Department, where he works with Hideo Mabuchi. He recently completed his PhD under Professor Mabuchi’s supervision. He also works part-time at Hewlett Packard Laboratories in the Large Scale Integrated Photonics group led by Ray Beausoleil. In November 2016, he will join Rigetti Computing (Berkeley, California) in their quest to build a quantum computer.