Doctorant sous la direction de E. GODOY

Titre de la thèse: Robust sensorless control of high speed Starter/Generators with high starting torque for the More Electric Aircraft
Résumé de la thèse: The aircraft manufacturers express the need to develop a more "electric" aircraft. This brings forward new requirements for the electric drive systems in terms of increasing the available on-board power and resource sharing in order to optimize the overall mass and cost. Among the ongoing studies on the evolution of motor drives, a particular interest is given to the development of multi-level brushless synchronous starter/generators (BSSG). These drives are likely to provide the high torque required to start-up the reactors to which they are associated. For this purpose, the knowledge, at any time, of the rotor position is essential. However, adding a dedicated sensor impacts on the design of the machine, increasing volume, cabling needs and cost. For this purpose, investigating on “sensorless” control laws will permit to avoid using such a sensor and to simplify the design of the Starter/Generators. Using a fine modelling of the machine, this work studies the conditions of feasibility for sensorless control and analyzes several techniques for this purpose. A new method of estimation of the shaft-position, particular to the BSSG architecture is proposed and then illustrated with experimental results. This technique is based on the processing of the existing harmonic components naturally in the stator of the machine and allows the estimation of the position at standstill and the very low speed. To extend the estimation to the whole speed range, a study of position estimation using a state observer using the complete model of the machine considering the knowledge of the existing (or injected) harmonic components in the stator currents is proposed. This observer can be applied to the brushless synchronous starter/generator but also on generic synchronous machines. In this study, its performance is illustrated on a permanent magnet synchronous machine.