New Stochastic Geometry Approaches to the Modelling and Analysis of Low and High Frequency Wireless Communication Networks

Monsieur Xiaojun XI
Thesis defended on December 19, 2019, 3:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

Composition du jury:

M. Marco Di Renzo Directeur de recherche-CNRS Directeur de Thèse
Mme Maryline Helard Professeur-IETR Président
M. Jalel Ben-Othman Professeur-CNRS-CentraleSupélec-Université Paris-Saclay and Université Paris 13 Examinateur
M. Jean-Marie Gorce Professeur-INSA-Lyon Examinateur
Mme Lina Mroueh Maître de conférences-ISEP Examinateur
Mme Valeria Loscri Chargé de recherche-Inria Lille-Nord Europe Examinateur
M. Mustapha Benjillali Maître de conférences-INPT-Maroc Rapporteur
M. Laurent Clavier Professeur-Institut Mines-Telecom Rapporteur

Abstract: In this thesis, we have developed new analytical frameworks for analyzing and optimizing future cellular networks with the aid of stochastic geometry and point processes. This thesis provides four main technical contributions.
First, we analyze emerging networks that can communicate by using light instead of radio waves. In this context, we propose an innovative analytical framework that allows us to estimate the coverage probability and the average rate of spatially distributed networks, which are used to gain insight for system optimization.
Second, we propose an innovative methodology for modeling spatially correlated cellular networks by using in-homogeneous point processes. The proposed approach is tested against practical deployment of cellular networks and found to be tractable and accurate. It is applied to the analysis of visible light communication networks, and the impact of spatial correlation is studied.
Third, we tackle the open problem of modeling Massive MIMO cellular networks. We study uplink and downlink cellular networks and propose new upper and lower bounds for the average spectral efficiency, which allow us to identify the optimal number of user to serve in each cell of the network and the impact of several key system parameters.
Fourth, we introduce and analyze the performance of a new interference-aware scheduling algorithm for application to the uplink of cellular networks. The proposed approach is based on muting some users in order to reduce the level of interference. The achievable performance and the user-fairness of the proposed approach are discussed and quantified analytically.


This PhD thesis is supported by the European Commission through the H2020-ETN-5Gaura project under grant 675806

Keywords: Stochastic geometry, visible light communication, in-homogeneous  point process, Massive MIMO, interference awarenesss

A Stochastic Geometry Approach to the Analysis and Optimization of Cellular Networks

Monsieur Jian SONG
Thesis defended on December 19, 2019, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

Composition du jury:

M. Marco Di Renzo Directeur de recherche CNRS Directeur de Thèse
Mme Maryline Helard Professeur - IETR Président
M. Jalel Ben-Othman Professeur-CNRS-CentraleSupélec-Université Paris-Saclay-Université Paris 13 Examinateur
M. Jean-Marie Gorce Professeur - INSA-Lyon Examinateur
Mme Valeria Loscri Chargé de recherche - Inria Lille-Nord Europe Examinateur
Mme Lina Mroueh Maître de conférences - ISEP Examinateur
M. Mustapha Benjillali Maître de conférences - INPT - Maroc Rapporteur
M. Laurent Clavier Professeur - Institut Mines-Telecom Rapporteur

Abstract: The main focus of this thesis is on modeling, performance evaluation and system-level optimization of next-generation cellular networks by using stochastic geometry. In addition, the emerging technology of Reconfigurable Intelligent Surfaces (RISs) is investigated for application to future wireless networks. In particular, relying on a Poisson-based abstraction model for the spatial distribution of nodes and access points, this thesis develops a set of new analytical frameworks for the computation of important performance metrics, such as the coverage probability and potential spectral efficiency, which can be used for system-level analysis and optimization. More specifically, a new analytical methodology for the analysis of three-dimensional cellular networks is introduced and employed for system optimization. A novel resource allocation problem is formulated and solved by jointly combining for the first time stochastic geometry and mixed-integer non-linear programming. The impact of deploying intelligent reflecting surfaces throughout a wireless network is quantified with the aid of line point processes, and the potential benefits of RISs against relaying are investigated with the aid of numerical simulations.

This PhD thesis is supported by the European Commission through the H2020-ETN-5Gaura project under grant 675806.

Keywords: Cellular Networks, Stochastic Geometry, Poisson Point Process, Optimization, Reconfigurable Intelligent Surfaces

Modeling and performance evaluation of spatial/y-correlated cellular networks

Madame Shanshan WANG
Thesis defended on March 14, 2019, 10:30 AM at CentraleSupelec (Gif-sur-Yvette)

CentraleSupelec , bâtiment Bréguet, L2S, 3, rue Joliot-Curie, 91190 Gif-sur-Yvette,salle D2.06

Soutiendra publiquement ses travaux de thèse intitulés

Modeling and performance evaluation of spatial/y-correlated cellular networks

dirigés par

Monsieur Marco DIRENZO


Composition du jury:

M. Marco DIRENZO L2S, CNRS Directeur de thèse
M. Marcelo DIAS DE AMORIM Sorbonne Université, LIP6 Rapporteur
M. Philippe MARY NSA Rennes, Laboratoire IETR Rapporteur
M. Marceau COUPECHOUX LTCI, Telecom ParisTech Examinateur
Mme Inbar  FIJALKOW ENSEA, Laboratoire ETIS Examinateur
M. Philippe MARTINS Telecom ParisTech Examinateur
Mme Lina MROUEH ISEP Examinateur




In the modeling and performance evaluation of wireless cellular networks, stochastic geometry is widely applied  to provide efficient and accurate solutions. Homogeneous Poisson point process (H-PPP) is the most widely used point process to model the spatial locations of base stations (BSs) due to its mathematical tractability and simplicity. For BSs with spatial correlations, only non-Poisson point processes can help. However, the long simulation time and weak mathematical tractability make non­ Poisson PPs not suitable. Therefore, to overcome mentioned problems, we have the following contributions in this thesis: First, we introduce a new methodology for modeling and analyzing downlink cellular networks, where the BSs constitute a motion-invariant point process that exhibits correlations among the points, i.e., spatial repulsion or spatial clustering. The proposed approach is based on the theory of inhomogeneous Poisson PPs (I-PPPs) and is referred to as inhomogeneous double thinning (IDT) approach. The proposed approach consists of approximating the original motion­ invariant PP with an equivalent PP that is made of the superposition of two conditionally independent 1- PPPs. A tractable expression of the coverage probability is obtained. Sufficient conditions on the parameters of the thinning functions that guarantee better or worse coverage compared with the baseline homogeneous PPP model are identified. Then, based on the IDT approach, a new tractable analytical expression of MISR of cellular networks where BSs exhibits spatial correlations is introduced. For homogeneous PPP, MISR is proved to be constant under network densification. For non-Poisson PPs, we apply proposed IDT approach to approximate the performance of non-Poisson point process. Taking beta-Ginibre point process (beta-GPP) as an example, we successfully prove that MISR for beta-GPP is constant under network densification with our proposed approximation functions. We prove that of MISR performance for beta-GPP case only depends on the degree of spatial repulsion, i.e., beta, regardless of different BS densities. Third, following the extension and application of !DT approach, we further study meta distribution of the SIR, which is the distribution of the conditional success probability given the point process. We derive and compare the closed-form expressions of the b-th moment function for homogeneous PPP and IDT approach. We propose a simple and accurate numerical method based on numerical inversion of Laplace transforms to compute CCDF through moments. The proposed method is more efficient and stable than the conventional approach. Furthermore, the proposed method is compared be more accurate than sorne other approximations and bounds.  Ali the proposed approaches are substantiated with the aid of empirical data for the spatial distribution of the BSs.

Mots-clés: HetNets, stochastic geometry, point processes,


Vous êtes cordialement conviés au pot qui suivra en salle du conseil du L2S (B4.40)

Mécanismes auto-organisants pour connexions bout en bout

Monsieur Julien FLOQUET
Thesis defended on December 19, 2018, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Janet

Réseaux, information et communications

Soutiendra publiquement ses travaux de thèse intitulés

« Mécanismes auto-organisants pour connexions bout en bout »

dirigés par

Messieurs Zwi ALTMAN et Richard COMBES


Composition du jury:

M. Zwi ALTMAN Orange Lab Directeur de thèse
M. Richard COMBES Centralesupelec Co-Directeur de thèse
M. Tijani CHAHED Telecom Sud Paris Examinateur
Mme Inbar FIJALKOW ENSEA Examinateur
M. Yesekael HAYEL Université d'Avignon  Rapporteur


Résumé :

Les réseaux de cinquième génération sont en cours de définition et leurs différentes composantes commencent à émerger: nouvelles technologies d'accès à la radio, convergence fixe et mobile des réseaux et virtualisation. Le contrôle et la gestion de bout en bout (E2E) du réseau ont une importance particulière pour les performances du réseau. Cela étant, nous segmentons le travail de thèse en deux parties: le réseau d’accès radio (RAN) axé sur la technologie MIMO Massif (M-MIMO) et la connexion E2E du point de vue de la couche transport. Dans la première partie, nous considérons la formation de faisceaux focalisés avec un structure hiérarchique dans les réseaux sans fil. Pour un ensemble de flots donnée, nous proposons des algorithmes efficaces en terme de complexité pour une allocation avec alpha-équité. Nous proposons ensuite des formules exactes pour la performance au niveau du flot, à la fois pour le trafic élastique (avec une équité proportionnelle et équité max-min) et le trafic en continu. Nous validons les résultats analytiques par des simulations. La seconde partie de la thèse vise à développer une fonction de réseau auto-organisant (SON) qui améliore la qualité d'expérience (QoE) des connexions en bout-en-bout. Nous considérons un service de type vidéo streaming et développons une fonctionnalité SON qui adapte la QoE de bout-en-bout entre le serveur vidéo et l'utilisateur. La mémoire-tampon reçoit les données d'un serveur avec une connexion E2E en suivant le protocole TCP. Nous proposons un modèle qui décrit ce comportement et nous comparons les formules analytiques obtenues avec les simulations. Enfin, nous proposons un SON qui donne la qualité vidéo de sorte que la probabilité de famine soit égale à une valeur cible fixée au préalable.

Mots-clés : Évaluation de performances,Starvation,TCP,E2E SON,MIMO Massif,Allocation de ressources

Allocation des Ressources pour la Gestion Dynamique du Spectre dans les Réseaux Ad hoc Clustérisés

Monsieur Jérôme GAVEAU
Thesis defended on July 11, 2018, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Janet

Composition du jury proposé:


M. Mohamad ASSAAD CentraleSupélec Directeur de thèse
M. Christophe LE MARTRET Thales Communication and Security Directeur de thèse
M. Xavier LAGRANGE IMT Atlantique Rapporteur
M. Stefano SECCI Sorbonne Université Rapporteur
M. Tijani CHAHED Télécom SudParis Examinateur
M. Philippe CIBLAT Télécom ParisTech Examinateur
M. Thierry DEFAIX DGA maîtrise de l'information Examinateur
Mme Berna SAYRAC Orange Labs Examinateur

Résumé : 
L'objectif de cette thèse concerne l'allocation des canaux fréquentiels dans les réseaux ad hoc organisés en clusters. Les terminaux du réseau sont assemblés localement en cluster afin de garder les avantages des réseaux ad hoc tout en réduisant la quantité de signalisation nécessaire à son fonctionnement. Dans chaque cluster, un chef de cluster (CH en anglais) est désigné parmi les terminaux dont le rôle est de gérer localement les ressources ainsi que les communications. Un des problèmes concerne l'allocation des bandes de fréquence à chaque cluster pour leur permettre d'opérer correctement. Les fréquences sont une ressource rare ce qui implique que plusieurs clusters sont amenés à utiliser les mêmes et donc à interférer entre eux. De plus, l'allocation de fréquence doit se faire de manière dynamique pour pouvoir s'adapter à la mobilité et aux variations du trafic. Le caractère décentralisé des réseaux ad hoc implique que l'allocation des fréquences doit se faire de manière distribuée. C'est pourquoi, au niveau de chaque cluster le CH décide à chaque instant la bande de fréquence à utiliser et cela sans échanger d'information avec les autres clusters. Le CH base ses décisions sur une fonction d'utilité qui prend en compte des mesures de performance des communications. Ces dernières peuvent être perturbées à cause des diverses variations dynamiques auxquels sont soumis les réseaux ad hoc. Parmi les algorithmes d'apprentissage distribués, nous avons identifié des méthodes basées sur le paradigme ``d'essais erreur'' (TE en anglais) comme des solutions potentielles au problème d'allocation des fréquences. Ces algorithmes ont la particularité d'avoir des propriétés de convergence globale bien que le problème soit non coopératif. Les preuves de convergence de ces algorithmes reposent sur l'analyse de chaînes de Markov dont la dimension croît de manière exponentielle avec la taille du problème. C'est pourquoi l'analyse de leurs performances est un enjeu important que l'on propose de résoudre en réalisant des approximations de ces chaînes dans des cas particuliers. Cela permet de réduire de manière importante la complexité du problème et d'approcher précisément les performances de ces algorithmes. Nous avons montrés théoriquement et numériquement que le principal défaut des approches TE est leur sensibilité aux variations aléatoires de la mesure d'utilité. Dans les systèmes de communication, il est usuel de considérer des phénomènes aléatoires liés aux canaux de propagation (e.g. évanouissements petite et moyenne échelle). Nous avons donc proposé des solutions pour adapter ces algorithmes aux cas où l'utilité serait perturbée par des phénomènes aléatoires. De plus, nous présentons une méthode permettant l'adaptation autonome et dynamique de la solution afin que les algorithmes opèrent dans différents contextes de perturbations. Enfin, dans cette thèse, on étudie de manière plus spécifique l'impact des évanouissements de Rayleigh sur l'utilité en calculant sa densité de probabilité (pdf en anglais). Dans le cas de transmissions OFDM et d'un évanouissement sélectif en fréquence, la forme complexe des fonctions impliquées dans la mesure de l'utilité ne nous permet pas de calculer sa pdf. Par conséquent, nous avons proposé d'approcher le canal par un modèle permettant de poursuivre les calculs numériques nécessaires pour obtenir la pdf. Cette approche permet également de prédire les performances d'une transmission OFDM.

Mots-clés : allocation des ressources,réseau clusturisé,gestion du spectre,,


Limites Fondamentales de Stockage pour les réseaux de diffusion de liens partagés et les réseaux de combinaison

Thesis defended on June 29, 2018, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Mesny

Résumé : 
Dans cette thèse, nous avons étudié le problème de cache codée en construisant la connexion entre le problème de cache codée avec placement non-codé et codage d'index, et en tirant parti des résultats de codage d'index pour caractériser les limites fondamentales du problème de cache codée. Nous avons principalement analysé le problème de cache codée dans le modèle de diffusion à liaison partagée et dans les réseaux combinés.

Dans la première partie de cette thèse, pour les réseaux de diffusion de liens partagés, nous avons considéré la contrainte que le contenu placé dans les caches est non-codé. Lorsque le contenu du cache est non-codé et que les demandes de l'utilisateur sont révélées, le problème de cache peut être lié à un problème de codage d'index. Nous avons dérivé des limites fondamentales pour le problème de cache en utilisant des outils pour le problème de codage d'index. Nous avons dérivé un nouveau schéma réalisable de codage d'index en base d'un codage de source distribué. Cette borne interne est strictement meilleure que la borne interne du codage composite largement utilisée. Pour le problème de cache centralisée, une borne externe sous la contrainte de placement de cache non-codé est proposée en base de une borne externe “acyclic” de codage d’index. Il est prouvé que cette borne externe est atteinte par le schéma cMAN lorsque le nombre de fichiers n'est pas inférieur au nombre d'utilisateurs, et par le nouveau schéma proposé pour le codage d’index, sinon. Pour le problème de cache décentralisée, cette thèse propose une borne externe sous la contrainte que chaque utilisateur stocke des bits uniformément et indépendamment au hasard. Cette borne externe est atteinte par le schéma dMAN lorsque le nombre de fichiers n'est pas inférieur au nombre d'utilisateurs, et par notre codage d'index proposé autrement.

Dans la deuxième partie de cette thèse, nous avons considéré le problème de cache dans les réseaux de relais, où le serveur communique avec les utilisateurs aidés par le cache via certains relais intermédiaires. En raison de la dureté de l'analyse sur les réseaux généraux, nous avons principalement considéré un réseau de relais symétrique bien connu, `réseaux de combinaison’, y compris H relais et binom {H} {r} utilisateurs où chaque utilisateur est connecté à un r-sous-ensemble de relais différent. Nous avons cherché à minimiser la charge de liaison maximale pour les cas les plus défavorables. Nous avons dérivé des bornes externes et internes dans cette thèse. Pour la borne externes, la méthode directe est que chaque fois que nous considérons une coupure de x relais et que la charge totale transmise à ces x relais peut être limitée à l'extérieur par la borne externes du modèle de lien partagé, y compris binom {x} {r} utilisateurs. Nous avons utilisé cette stratégie pour étendre les bornes externes du modèle de lien partagé et la borne externe “acyclic” aux réseaux de combinaison. Dans cette thèse, nous avons également resserré la borne externe “acyclic” dans les réseaux de combinaison en exploitant davantage la topologie du réseau et l'entropie conjointe des diverses variables aléatoires. Pour les schémas réalisables, il existe deux approches, la séparation et la non-séparation. De plus, nous avons étendu nos résultats à des modèles plus généraux, tels que des réseaux combinés où tous les relais et utilisateurs sont équipés par cache, et des systèmes de cache dans des réseaux relais plus généraux. Les résultats d'optimisation ont été donnés sous certaines contraintes et les évaluations numériques ont montré que nos schémas proposés surpassent l'état de l'art.

Mots-clés :  Cache, Codage d'index, Théorie d'information, Codage de source

Composition du jury proposé:

Mme Daniela TUNINETTI    University of Illinois at Chicago    Directeur de thèse
M. Pablo PIANTANIDA    CentraleSupélec Co Directeur de thèse
M. Giuseppe CAIRE    TU Berlin Rapporteur
M. Petros ELIA    EURECOM Rapporteur
M. Deniz GUNDUZ    Imperial College London Examinateur
M. Michel  KIEFFER    L2S--Université Paris-sud Examinateur
M. Charly  POULLIAT    Université de Toulouse Examinateur
Mme Mireille SARKISS    CEA Examinateur
Mme Armelle WAUTIER    CentraleSupélec Examinateur




Réseaux de multidiffusion avec coopération interactive entre récepteurs

Thesis defended on February 07, 2018, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

La présente thèse s’intéresse aux communications descendantes, plus spécifiquement aux canaux de multidiffusion, pour lesquels un émetteur diffuse un message commun destiné à tous les utilisateurs d’un groupe. Pour que le débit ne soit pas limité par le plus faible utilisateur en terme de qualité de canal, différentes solutions reposant sur des techniques entrées multiples sorties multiples massives ou multi-débit ont été proposées dans la littérature. Cependant, si tous les utilisateurs souhaitaient obtenir le même niveau de qualité, le plus faible utilisateur établirait le débit et/ou nécessiterait une quantité de ressources démesurée, ce qui impacterait tout le groupe. Les études récentes portant sur les communications d’appareil à appareil ouvrent la voie à la coopération entre utilisateurs proches, ce qui pourrait bénéficier à tous les utilisateurs, en garantissant le même niveau de qualité tout en maintenant un faible coût en ressource et en énergie. C’est pour ces raisons que cette thèse s’intéresse aux canaux de multidiffusion avec coopération entre récepteurs. La théorie de l’information formalise l’étude de ces réseaux et fournie des bornes universels portant sur le débit transmissible. Le plan de coopération proposé se base sur une superposition appropriée d’opérations de compresse-relaie (CF) et décode-relaie (DF), et il est prouvé que ses performances surpasse celles des plans de coopérations non-interactifs pour le scénario à deux récepteurs. Les propriétés de la coopération interactive émergent de l’asymétrie de construction du plan de coopération, ce qui permet d’adapter l’ordre des CFs et DFs en fonction de la qualité du canal. L’idée derrière cette interaction, les intuitions concernant les points clés de la construction, et des résultats numériques sont donnés pour des réseaux de petites tailles. Des simulations au niveau du système illustrent le gain potentiel que la coopération entre récepteurs pourrait apporter pour des réseaux de plus grandes tailles.

Devant le jury composé de :


 Professeur Associé

 Imperial College London (Rapporteur)

M. Nicolas GRESSET

 Ingénieur de Recherche

 Mitsubishi Electric R&D Centre Europe (Co-Directeur de thèse)



 CentraleSupélec (Examinateur)


 Directeur de Recherche

 IMT Atlantique (Examinateur)

M. Sheng YANG

 Maître de Conférences

 CentraleSupélec (Directeur de thèse)

M. Abdellatif ZAIDI

 Professeur Associé

 Université Paris-Est Marne-la-Vallée (Rapporteur)


Caractérisation des performances limites des jeux non-coopératifs avec observation imparfaite. Application à la téléphonie mobile 5G.

Thesis defended on December 21, 2017, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

A large part of the results reported in this thesis is based on an observation which has never been made for wireless communications and power control in particular: transmit power levels and more generally transmit covariance matrices can be exploited to embed information such as coordination information and available interference-dependent feedback samples can be exploited as a communication channel. First, we show that the famous iterative water-filling algorithm does not exploit the available information sufficiently well in terms of sum-utility. Indeed, we show that global channel state information can be acquired from the sole knowledge of an SINR-type feedback. A natural question then arises. Is it possible to design a distributed power control algorithm which exploits as well as possible the available information? To answer this question, we derive the characterization of the utility region for the considered problem and show how to exploit this characterization not only to measure globally efficiency but also to obtain globally efficient one-shot power control functions. Motivated by the success of our approach for single-band and multi-band interference networks, we asked ourselves whether it could be exploited for MIMO networks. We have identified at least one very relevant scenario. Indeed, we show that opportunistic interference alignment can be implemented by only assuming interference-plus-noise covariance feedback at the secondary transmitter. Then, in the last chapter, we generalize the problem of quantization, the motivation for this being given by some observations made in the previous chapters. First, we assume that the quantizer and de-quantizer are designed to maximize a general utility function instead of the conventional distortion function. Second, we assume that the quantizer and de-quantizer may have different utility functions. This raises non-trivial technical problems, our claim is to make a very first step in solving them.

Mots-clés :  Théorie des Jeux, communication sans fil, allocation des ressources

Composition du jury proposé

M. Samson LASAULCE     L2S     Directeur de thèse
M. David GESBERT     EURECOM     Rapporteur
M. Eduard JORSWIECK     TU Dresden     Rapporteur
M. Mérouane  DEBBAH     Huawei     Examinateur
M. Yezekael HAYEL     University of Avignon     Examinateur
M. Luca SANGUINETTI     University of Pisa     Examinateur
Mme Veronica BELMEGA     University of Cergy-Pontoise     Examinateur
Mme Mylène PISCHELLA     CNAM     Examinateur

A View of Information-Estimation Relations in Gaussian Networks

Seminar on October 09, 2017, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Prof. Shlomo Shamai (Andrew and Erna Viterbi Department of Electrical Engineering)

This talk will focus on the recent applications of Information-Estimation Relations to Gaussian Networks. In the first part of the talk, we will go over recent connections between estimation theoretic and information theoretic measures. The estimation theoretic measures that would
be of importance to us are the Minimum Means p-th Error (MMPE) and its special case the Minimum Mean Square Error (MMSE). As will be demonstrated, the MMSE can be very useful in bounding mutual information via the I-MMSE relationship of Guo-Shamai-Verdu, and the MMPE can be used to bound the conditional entropy via the moment entropy inequality. In the second part of the talk, we will discuss several applications of Information-Estimation Relations in Gaussian noise networks. As the first application, we show how the I-MMSE relationship can be used to determine the behavior, for every signal-to-noise ratio (SNR), of the mutual information and the MMSE of the transmitted codeword for the setting of the Gaussian Broadcast Channel and the Gaussian Wiretap Channel. As a second application, the notion of the MMPE is used to generalize the Ozarow-Wyner lower bound on the mutual information for discrete inputs on Gaussian noise channels. A short outlook of future applications concludes the presentation.

This work is in collaboration with R. Bustin, A. Dytso, H. Vincent Poor, Daniela Tuninetti, Natasha Devroye, and it is supported by the European Union's Horizon 2020 Research And Innovation Programme, grant agreement no. 694630.

Combined Optimal Activation and Transmission Control in Delay Tolerant Network

Seminar on October 04, 2017, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Amar Prakash Azad, Inria Sophia Antipolis

Generalized Secrecy Capacity

Seminar on October 02, 2017, 11:30 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Matthieu Bloch

On the Degrees of Freedom of MISO Broadcast Channels with Partial CSIT

Seminar on September 20, 2017, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Dr. Hamdi Joudeh (Imperial College London)

The multiple-input-single-output (MISO) broadcast channel (BC), in which a multi-antenna transmitter communicates with multiple uncoordinated single-antenna receivers, is an essential building block of modern wireless networks. In this channel, multiuser interference management is naturally carried out at the transmitter. This in turn requires highly accurate and up-to-date channel state information at the transmitter (CSIT), which is not always available in practice. While it is understood that the MISO BC is sensitive to CSIT inaccuracies, the capacity under such conditions remains largely a mystery. Hence, it is natural to resort to coarse approximations, e.g. the Degrees of Freedom (DoF), when studying such challenging problems. In this talk, I will review some recent (and not so recent) results in DoF studies of the MISO BC when only partial instantaneous CSIT is available. I will be focusing on tools used to derive achievability and converse result. I will also present some new DoF results for parallel MISO BCs (e.g. OFDM) with partial CSIT. Implications, insights and open problems are also discussed.

Bio: Hamdi Joudeh is a postdoctoral research associate in the Communications and Signal Processing Group, Department of Electrical and Electronic Engineering at Imperial College London. He received his PhD in Electrical Engineering and MSc in Communications and Signal Processing from Imperial College London, UK, in 2016 and 2011 respectively. His research interests are in the areas of wireless communications and multiuser information theory. He is currently serving as an associate editor for the EURASIP Journal on Wireless Communications and Networking.

Traffic-Aware Scheduling and Feedback Reporting in Wireless Networks

Thesis defended on May 22, 2017, 9:00 AM at CentraleSupelec (Gif-sur-Yvette) Amphi Mesny

Demand of wireless communication systems for high throughputs continues to increase, and there are no signs this trend is slowing down. Three of the most prominent techniques that have emerged to meet such demands are OFDMA, cooperative relaying and MIMO. To fully utilize the capabilities of systems applying such techniques, it is essential to develop efficient scheduling algorithms and, more generally, efficient resource allocation algorithms. Classical studies on this subject investigate in much detail settings where the data requests of the users are not taken into consideration or where the perfect and full CSI is assumed to be available for the scheduling mechanism. In practice, however, different limitations may result in not having perfect or full CSI knowledge, such as limited feedback resources, probing cost and delay in the feedback process. Accordingly, in this thesis we examine the problems of scheduling and feedback allocations under realistic considerations concerning the CSI knowledge. Analysis is performed at the packet level and considers the queueing dynamics in the systems with arbitrary arrival processes, where the main performance metric we adopt is the stability of the queues. The first part of the thesis considers a multipoint to multipoint MIMO system with TDD mode under limited backhaul capacity and taking into account the feedback probing cost. Regarding the interference management technique, we apply interference alignment (IA) if more than one pair are active and SVD if only one pair is active. The second part of the thesis considers a multiuser multichannel OFDMA-like system where delayed and limited feedback is accounted for. Two scenarios are investigated, namely the system without relaying and the system with relaying. For the latter one, an additional imperfection we account for is that the users have incomplete knowledge of the fading coefficients between the base-station and the relay.


M. Vincent K. N. LAU  Hong Kong       University of Science and Technology  Rapporteur

M. Jean-Marie GORCE                        NSA Lyon                                             Rapporteur

M. Anthony EPHREMIDES                  University of Maryland, College Park   Examinateur

M. Jianwei  HUANG Chinese               University of Hong Kong                      Examinateur

M. Michel  KIEFFER                             Université Paris-Sud                           Examinateur

Mme Laura  COTTATELLUCCI            Eurecom                                              Examinateur

M. Mérouane DEBBAH                        CentraleSupélec                                 Directeur de thèse

M. Mohamad ASSAAD                        CentraleSupélec                                 CoDirecteur de thèse

Semantically-Secured Message-Key Trade-off over Wiretap Channels with Random Parameters

Seminar on May 04, 2017, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Alexander Bunin, Faculty of Electrical Engineering at the Technion-Israel Institute of Technology, Israel.

Modern communication systems usually present an architectural separation between error correction and data encryption. The former is typically realized at the physical layer by transforming the noisy communication channel into a reliable "bit pipe". The data encryption is implemented on top of that by applying cryptographic principles.

Physical layer security (PLS) rooted in information-theoretic principles, is an alternative approach to provably secure communication. This approach dates back to Wyner's celebrated 1975 paper on the wiretap channel (WTC). By harnessing randomness from the noisy communication channel and combining it with proper physical layer coding, PLS guarantees protection against computationally-unlimited eavesdroppers with no requirement that the legitimate parties share a secret key (SK) in advance. The eavesdroppers computational abilities are of no consequence here since the signal he/she observes from the channel carries only negligible information about the secret data.

Two fundamental questions in PLS are those of the best achievable transmission rate of a secret message (SM) over a noisy channel, and the highest attainable SK rate that distributed parties can agree upon. Our work studies the trade-off between SM and SK rates simultaneously achievable over a state-dependent wiretap channel WTC with non-causal channel state information (CSI) at the encoder. This model subsumes all other instances of CSI availability as special cases, and calls for an efficient utilization of the state sequence both for reliability and security purposes. We derive an inner bound on the SM-SK capacity region based on a novel superposition coding scheme. Our inner bound improves upon the previously best known SM-SK trade-off result by Prabhakaran et al., and to the best of our knowledge, upon all other existing lower bounds for either SM or SK for this setup. The results are derived under the strict semantic-security metric that requires negligible information leakage for all message-key distributions. The achievability proof uses the strong soft-covering lemma for superposition codes.
The talk is based on joint work with: Z. Goldfeld and H. H. Permuter (Ben-Gurion University of the Negev, Israel), S. Shamai (Technion - Israel Institute of Technology), P. W. Cuff (Princeton University) and P. Piantanida (CentralSupelec).
The work of A. Bunin and S. Shamai has been supported by the European Union's Horizon 2020 Research And Innovation Programme, grant agreement no. 694630.

Broadcasting with delayed CSIT: finite SNR analysis and heterogeneous feedback

Chao HE
Thesis defended on December 02, 2016, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-05

One of the key techniques for future wireless networks, namely state-feedback enabled interference mitigation, is explored with information theoretical tools under some realistic settings. In order to verify the usefulness of delayed CSIT in harsh situations, we investigate it with finite SNR and/or feedback heterogeneity in a broadcast communication setup. In the first part of this dissertation, we are mainly interested in the finite SNR performance of delayed CSIT and the uniformity across the results in Gaussian channel and in erasure channel. Several relatively simple schemes are proposed in multi-user broadcast channels when states are assumed to be fully known at the destinations but only strictly causally at the transmitter. Enhancement in terms of higher symmetric rates and more input alphabet options are then characterized when analyzing the corresponding regions in Gaussian/erasure cases. In the second part of this dissertation, algorithms adapted to distinct feedback heterogeneities are targeted as only part of communication nodes are involved in the feedback process. In particular, we concentrate on 1) broadcast channel with feedback from partial receivers, 2) broadcast relay channel with feedback at the relay. Improvements on achievable rates are justified in either cases via analysis and some examples.


Devant le jury composé de :


Michel KIEFFER                         Professeur (Université Paris-Sud)                      Président du jury

Inbar FIJALKOW                        Professeur (ENSEA)                                           Rapporteur

Albert Guillén i FABREGAS       Professeur (Universitat Pompeu Fabra)             Rapporteur

David GESBERT                        Professeur (EURECOM)                                     Examinateur

Michèle Angela WIGGER           Professeur associé (Télécom ParisTech)            Examinateur

Samir M. PERLAZA                   Chargé de recherche (INRIA Lyon)                     Examinateur

Sheng YANG                              Enseignant-Chercheur (CentraleSupélec)           Directeur de thèse

Pablo PIANTANIDA                   Enseignant-Chercheur (CentraleSupélec)           Co-encadrant

Efficacité énergétique et spectrale dans les réseaux 5G

Thesis defended on December 02, 2016, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S

La pénurie d'énergie et le manque d'infrastructures dans les régions rurales représentent une barrière pour le déploiement et l'extension des réseaux cellulaires. Les approches et techniques pour relier les stations de base (BSs) entre elles à faible coût et d'une manière fiable et efficace énergiquement sont l'une des priorités des opérateurs. Ces réseaux peu denses actuellement, peuvent évoluer rapidement et affronter une croissance exponentielle due principalement à l'utilisation des téléphones mobiles, tablettes et applications gourmandes en bande passante. La densification des réseaux est l'une des solutions efficaces pour répondre à ce besoin en débit élevé. Certes, l'introduction de petites BSs apporte de nombreux avantages tels que l'amélioration du débit et de la qualité du signal, mais entraîne des contraintes opérationnelles telles que le choix de l'emplacement des noeuds dans ces réseaux de plus en plus denses ainsi que leur alimentation. Les problèmes où la contrainte spatiale est prépondérante sont bien appropriés à la modélisation par la géométrie stochastique qui permet une modélisation réaliste de distribution des BSs. Ainsi, l'enjeu est de trouver de nouvelles approches de gestions d'interférence et de réductions de consommation énergétique dans les réseaux sans fil. Le premier axe de cette thèse s'intéresse aux méthodes de gestion d'interférence dans les réseaux cellulaires se basant sur la coordination entre les BSs, plus précisément, la technique Coordinated MultiPoint Joint Transmission (CoMP-JT). En CoMP-JT, les utilisateurs en bordure de cellules qui subissent un niveau très élevé d'interférences reçoivent plusieurs copies du signal utile de la part des BSs qui forment l'ensemble de coordination. Ainsi, nous utilisons le modèle $r$-$l$ Square Point Process (PP) à fin de modéliser la distribution des BSs dans le plan. Le processus $r$-$l$ Square PP est le plus adapté pour modéliser le déploiement réel des BSs d'un réseaux sans fil, en assurant une distance minimale, ($r$ - $l$), entre les points du processus. Nous discutons l'impact de la taille de l'ensemble de coordination sur les performances évaluées. Ce travail est étendu pour les réseaux denses WiFi IEEE 802.11, où les contraintes de portées de transmission et de détection de porteuse ont été prises en compte. Dans le deuxième axe du travail, nous nous intéressons à l'efficacité énergétique des réseaux mesh. Nous proposons l'utilisation des antennes directionnelles (DAs) pour réduire la consommation énergétique et améliorer le débit de ces réseaux mesh. Les DAs ont la capacité de focaliser la transmission dans la direction du récepteur, assurant une portée plus importante et moins d'énergie dissipée dans toutes les directions. Pour différentes topologies, nous dérivons le nombre de liens et montrons que ce nombre dépend du nombre de secteurs de l'antenne. Ainsi, en utilisant les simulations, nous montrons que le gain, en énergie et en débit, apporté par les DAs peut atteindre 70% dans certains cas. De plus, on propose un modèle d'optimisation conjointe d'énergie et du débit adapté aux réseaux WMNs équipés de DAs. La résolution numérique de ce modèle confortent les résultats de simulation obtenus dans la première partie de cette étude sur l'impact des DAs sur les performances du réseaux en termes de débit et d'énergie consommée. Ces travaux de thèse s'inscrivent dans le cadre du projet collaboratif (FUI16 LCI4D), qui consiste à concevoir et à valider une architecture radio ouverte pour renforcer l'accès aux services broadband dans des lieux ne disposant que d'une couverture minimale assurée par un réseau macro-cellulaire traditionnel.

Mots-clés :  Coordinated MultiPoint, Géométrie stochastique , Réseaux mesh, Optimisation

Composition du jury

M. André-Luc BEYLOT        Professeur à l'ENSEEIHT, Toulouse     Rapporteur
M. Anthony BUSSON          Professeur à l'Université de Lyon 1     Examinateur
M. Bernard COUSIN            Professeur à l'Université de Rennes1     Examinateur
M. Steven MARTIN              Professeur à l'Université Paris 11     Examinateur
Mme Lynda MOKDAD         Professeur à l'Université Paris 12     Rapporteur
Mme Véronique VEQUE      Professeur à l'Université Paris 11     Directeur de thèse
Mme Lynda ZITOUNE          Maître de Conférence à l'ESIEE, Paris     Co-encadrant de thèse

Distributed Information Gathering and Estimation in Wireless Sensor Networks

Wenjie LI
Thesis defended on November 15, 2016, 10:00 AM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

Wireless sensor networks (WSNs) have attracted much interests in the last decade. The first part of this thesis considers sparse random linear network coding is for data gathering and compression in WSNs. An information-theoretic approach is applied to demonstrate the necessary and sufficient conditions to realize the asymptotically perfect reconstruction under MAP estimation. The second part of the thesis concerns the distributed self-rating (DSR) problem, for WSNs with nodes that have different ability of performing some task (sensing, detection...). The main assumption is that each node does not know and needs to estimate its ability. Depending on the number of ability levels and the communication conditions, three sub-problems have been addressed: i) distributed faulty node detection (DFD) to identify the nodes equipped with defective sensors in dense WSNs; ii) DFD in delay tolerant networks (DTNs) with sparse and intermittent connectivity; iii) DSR using pairwise comparison. Distributed algorithms have been proposed and analyzed. Theoretical results assess the effectiveness of the proposed solution and give guidelines in the design of the algorithm.

Membres du jury :

M. Cédric RICHARD, Professeur (Université de Nice Sophia Antipolis),  Rapporteur
M. Jean-Marie GORCE, Professeur (INSA Lyon), Rapporteur
Mme. Béatrice LAROCHE,  Directeur de recherche (INRA), Examinatrice
M. Fabio FAGNANI,  Professor (Politecnico di Torino), Examinateur
M. Davide DARDARI, Associate Professor (University of Bologna), Examinateur
M. Michel KIEFFER,  Professeur (Université Paris-Sud), Directeur de thèse
Mme. Francesca BASSI, Enseignant-Chercheur (ESME-Sudria), Co-encadrant de thèse

Some results on the existence of equilibria and stability of dc linear networks with constant power loads.

Seminar on July 13, 2016, 11:30 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Prof. Robert Griñó, Polytechnic University of Catalonia

The presentation will show some results on the existence of equilibria in dc electrical networks that supply to constant power loads (CPLs). Specifically, a necessary condition for the existence, which is also sufficient for the case one and two CPLs, will be presented. Besides, a sufficient condition, based on the negative imaginary systems concept, that assures local stability for all the range of possible equilibria will be shown for the case of a dc linear network with a single ideal or finite-bandwidth CPL.

Réseaux sans fil avec connaissance du canal imparfaite

Sheng YANG
Habilitation à Diriger des Recherches (HDR) onJune 30, 2016, 11:30 AM at

La connaissance parfaite du canal dans un réseau sans fil est cruciale pour réduire de l’interférence entre les utilisateurs. Cependant, à cause des contraintes de délais et de ressource limité, cette connaissance est souvent bruitée ou retardée aux émetteurs/récepteurs. Etudier les limites fondamentales de la communications avec information adjacente imparfaite a donc une importance à la fois théorique et pratique.


La thèse d’HDR présente de nouveaux progrès dans cet axe. Notamment, l’influence des voies de retour et de la coopération sur les performances des réseaux de communication ainsi que l’impact de la manque de connaissance de phase du canal dans un canal MIMO ont été explorés en utilisant la théorie de l’information. Les résultats obtenus couvrent de différentes applications ,tel que les réseaux hétérogènes, la communication sécurisée, les réseaux de diffusion de contenu, et la communication par fibre optique.

Composition du Jury

Prof. Philippe CIBLAT, Telecom ParisTech (Examinateur)

Prof. Mérouane DEBBAH, CentraleSupélec (Examinateur)

Dr. Pierre DUHAMEL, L2S, CNRS  (Examinateur)

Dr. Walid HACHEM, LTCI, CNRS (Rapporteur)

Prof. Syed Ali JAFAR, University of California, Irvine (Rapporteur)

Prof. Gerhard KRAMER, TU Munich   (Rapporteur)

Prof. Hikmet SARI, CentraleSupélec (Invité)

Topological Interference Management

Seminar on June 28, 2016, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40
Dr Syed Ali Jafar


Studies of the degrees of Freedom (DoF) of wireless communication networks often focus on clever ways to exploit an abundance of channel knowledge which is rarely available in practice while ignoring topological aspects that are the basis of most robust interference management schemes. Topological interference management refers to a complementary perspective where the focus is on exploiting network topology under limited channel knowledge. Progress in this direction includes the discovery that optimal interference avoidance is essentially the index coding problem, that interference alignment plays a central role in this problem even though no precise knowledge of channel realizations is available, a new set of conditions for the approximate optimality of treating interference as noise, novel outer bounds based on aligned image sets, and connections to network coding problems such as distributed storage repair, multiple unicasts and private information retrieval. This talk will summarize the advances in the broad area of topological interference management and highlight some of the key open problems.


Syed Ali Jafar received his B. Tech. from IIT Delhi, India, in 1997, M.S. from Caltech, USA, in 1999, and Ph.D. from Stanford, USA, in 2003, all in Electrical Engineering. His industry experience includes positions at Lucent Bell Labs, Qualcomm Inc. and Hughes Software Systems. He is a Professor in the Department of Electrical Engineering and Computer Science at the University of California Irvine, Irvine, CA USA. His research interests include multiuser information theory, wireless communications and network coding.

Dr. Jafar received the Blavatnik National Laureate in Physical Sciences and Engineering in 2015, the UCI Academic Senate Distinguished Mid-Career Faculty Award for Research in 2015, the School of Engineering Mid-Career Excellence in Research Award in 2015, the School of Engineering Maseeh Outstanding Research Award in 2010, the ONR Young Investigator Award in 2008, and the NSF CAREER award in 2006. His co-authored papers received the IEEE Information Theory Society Best Paper Award in 2009, IEEE Communications Society Best Tutorial Paper Award in 2013, IEEE Communications Society Heinrich Hertz Award in 2015, IEEE Signal Processing Society Young Author Best Paper Award (to student co-authors) in 2015, an IEEE GLOBECOM Best Paper Award in 2012 and an IEEE GLOBECOM Best Paper Award in 2014. Dr. Jafar received the UC Irvine EECS Professor of the Year award five times, in 2006, 2009, 2011, 2012, and 2014, from the Engineering Students Council and the Teaching Excellence Award in 2012 from the School of Engineering. He was a University of Canterbury Erskine Fellow in 2010 and an IEEE Communications Society Distinguished Lecturer for 2013-2014. Dr. Jafar was recognized as a Thomson Reuters Highly Cited Researcher and included by Sciencewatch among The World's Most Influential Scientific Minds in 2014 and again in 2015. He served as Associate Editor for IEEE Transactions on Communications 2004-2009, for IEEE Communications Letters 2008-2009 and for IEEE Transactions on Information Theory 2009-2012. Dr. Jafar was elevated to IEEE Fellow, Class of 2014, for contributions to analyzing the capacity of wireless communication networks.