Quelques problèmes dans l’analyse et la commande des réseaux électriques avec des charges à puissance constante

Monsieur Juan E. Machado
Thesis defended on November 22, 2019, 3:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S

Composition du jury proposé:

Mr. Romeo Ortega L2S (CNRS, UMR 8506) Directeur de thèse
Mr. Luca Greco Université Paris-Sud (UMR8506) Examinateur
Mr. Robert Griñó Universitat Politècnica de Catalunya Examinateur
Mme Françoise Lamnabhi-Lagarrigue L2S (CNRS, UMR 8506) Examinateur
Mr. John W. Simpson-Porco University of Waterloo Rapporteur
Mr. Aleksandar Stankovic Tufts University Rapporteur

 

Resumé: La croissante demande d’énergie électrique a conduit à la conception de systèmes électriques de grande complexité où les combustibles fossiles constituent la principale source d’énergie. Néanmoins, les préoccupations environnementales poussent à un changement majeur dans les pratiques de production d’électricité, avec un passage marqué des énergies fossiles aux énergies renouvelables et des architectures centralisées à distribuées. Les problèmes de stabilité dus à la présence de ce qu’on appelle les Charges à Puissance Constante (CPLs) constituent l’un des principaux défis auxquels sont confrontés les systèmes électriques distribués. On sait que ces charges, que l’on trouve couramment dans les installations de technologie de l’information et de la communication, réduisent l’amortissement effectif des circuits qui les alimentent, ce qui peut provoquer des oscillations de tension, voire une chute. Dans cette thèse, les principales contributions sont centrées sur la compréhension et la résolution de divers problèmes rencontrés dans l’analyse et le contrôle de systèmes électriques contenant des CPLs. Les contributions sont énumérées comme suit. (i) Des conditions simplement vérifiables sont proposées pour certifier la non existence d’états en régime permanent pour des réseaux multi-ports, à courant alternatif avec une distribution de CPLs. Ces conditions, qui reposent sur les inégalités matricielles linéaires, permettent d’écarter les valeurs des puissances des charges qui produiraient certainement un effondrement de la tension sur l’ensemble du réseau. (ii) Pour des modèles généraux de certains systèmes électriques modernes, y compris les réseaux de transmission à courant continu haute tension et les microréseaux, il est montré que, si des équilibres existent, il existe un équilibre caractéristique à haute tension qui domine tous les autres. En outre, dans le cas des systèmes d’alimentation en courant alternatif sous l’hypothèse de découplage standard, cet équilibre caractéristique s’avère stable à long terme. (iii) Une classe de systèmes port-Hamiltoniens, dans laquelle les variables de contrôle agissent directement sur l’équation de puissance, est explorée. Il est démontré que ces systèmes sont décalés de manière passive lorsque leurs trajectoires sont contraintes à des ensembles facilement définissables. Ces dernières propriétés sont exploitées pour analyser la stabilité de leurs équilibres intrinsèquement non nuls. Il a également été montré que la stabilité des réseaux électriques à courant continu multiports et des générateurs synchrones, tous deux connectés à des CPLs, peuvent naturellement être étudiée dans le cadre proposé. (iv) Le problème de la régulation de la tension de sortie du convertisseur buck-boost alimentant une CPL non connu est résolu. L’un des principaux obstacles à la conception de commandes linéaires classiques provient du fait que le modèle du système est de phase non minimale par rapport à chacune de ses variables d’état. Cette thèse rapporte un contrôleur adaptatif non linéaire capable de rendre un équilibre souhaité asymptotiquement stable; de plus, une estimation de la région d’attraction peut être calculée. (v) La dernière contribution concerne l’amortissement actif d’un système d’alimentation de petite taille à courant continu avec une CPL. Au lieu de connecter des éléments passifs peu pratiques et énergétiquement inefficaces au réseau existant, l’ajout d’un convertisseur de puissance contrôlé est exploré. La contribution principale rapportée ici est la conception d’une loi de contrôle non linéaire basée sur l’observateur pour le convertisseur. La nouveauté de la proposition réside dans le fait qu’il n’est pas nécessaire de mesurer le courant électrique du réseau ni la valeur de la CPL, soulignant ainsi son applicabilité pratique. L’efficacité du schéma de contrôle est ensuite validée par des expériences sur un réseau à courant continu réel.

Abstract: The continuously increasing demand of electrical energy has led to the conception of power systems of great complexity that may extend even through entire countries. In the vast majority of large-scale power systems the main primary source of energy are fossil fuels. Nonetheless, environmental concerns are pushing a major change in electric energy production practices, with a marked shift from fossil fuels to renewables and from centralized architectures to more distributed ones. One of the main challenges that distributed power systems face are the stability problems arising from the presence of the so-called Constant Power Loads (CPLs). These loads, which are commonly found in information and communication technology facilities, are known to reduce the effective damping of the circuits that energize them, which can cause voltage oscillations or even voltage collapse. In this thesis, the main contributions are focused in understanding and solving diverse problems found in the analysis and control of electrical power systems containing CPLs. The contributions are listed as follows. (i) Simply verifiable conditions are proposed to certify the non existence of steady states in general, multi-port, alternating current (AC) networks with a distributed array of CPLs. These conditions, which are based on Linear Matrix Inequalities, allow to discard the values of the loads’ powers that would certainly produce a voltage collapse in the whole network. (ii) For general models of some modern power systems, including High-Voltage Direct Current transmission networks and microgrids, it is shown that if equilibria exist, then there is a characteristic high-voltage equilibrium that dominates, entry-wise, all the other ones. Furthermore, for the case of AC power systems under the standard decoupling assumption, this characteristic equilibrium is shown to be long-term stable. (iii) A class of port-Hamiltonian systems, in which the control variables act directly on the power balance equation, is explored. These systems are shown to be shifted passive when their trajectories are constrained to easily definable sets. The latter properties are exploited to analyze the stability of their intrinsically non zero equilibria. It is also shown that the stability of multi-port DC electrical networks and synchronous generators, both with CPLs, can be naturally studied with the proposed framework. (iv) The problem of regulating the output voltage of the versatile DC buck-boost converter feeding an unknown CPL is addressed. One of the main obstacles for conventional linear control design stems from the fact that the system’s model is nonminimum phase with respect to each of its state variables. As a possible solution to this problem, this thesis reports a nonlinear, adaptive controller that is able to render a desired equilibrium asymptotically stable; furthermore an estimate of the region of attraction can be computed. (v) The last contribution concerns the active damping of a DC small-scale power system with a CPL. Instead of connecting impractical, energetically inefficient passive elements to the existing network, the addition of a controlled DC-DC power converter is explored. The main contribution reported here is the design of a nonlinear, observer-based control law for the converter. The novelty of the proposal lies in the non necessity of measuring the network’s electrical current nor the value of the CPL, highlighting its practical applicability. The effectiveness of the control scheme is further validated through experiments on a real DC network.

Mots clés: Réseaux électriques, Charges à Puissance Constante, Analyse, Commande

Keywords: Power systems, Constant Power Loads (CPLs), Analysis, Control

Contribution à l'estimation d'état par méthodes ensemblistes ellipsoidales et zonotopiques

Dory MERHY
Thesis defended on October 24, 2019, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

Membres du jury :

Mme Cristina STOICA MANIU          CentraleSupélec - L2S          Directrice de thèse
M. Teodoro ALAMO                         Université de Séville            Co-encadrant
M. Eduardo F. CAMACHO                  Université de Séville         Co-encadrant
M. Antoine GIRARD                            CNRS - L2S                          Examinateur
M. Christophe COMBASTEL                Université de Bordeaux      Examinateur
M. Dan SELISTEANU                       Université de Craiova             Rapporteur
M. José Manuel CARO BRAVO               Université de Huelva              Rapporteur
M. Nacim RAMDANI                        Université d'Orléans            Rapporteur

 

Résumé : Dans le contexte des systèmes dynamiques, cette thèse développe des techniques d'estimation d'état ensemblistes pour des différentes classes de systèmes. On considère pour cela le cas d'un système standard linéaire invariant dans le temps soumis à des perturbations, des bruits de mesure et des incertitudes inconnus, mais bornés. Dans une première étape, une technique d'estimation d'état ellipsoïdale est étendue, puis appliquée sur un modèle d'octorotor utilisé dans un contexte radar. Une extension de cette approche ellipsoïdale d'estimation d'état est proposée pour des systèmes descripteurs. Dans la deuxième partie, nous proposons une méthode fondée sur la minimization du P-rayon d'un zonotope, appliquée à un modèle d'octorotor. Cette méthode est ensuite étendue pour traiter les systèmes affines par morceaux. Dans la continuité des approches précédentes, un nouveau filtre de Kalman sous contraintes zonotopiques est proposé dans la dernière partie de cette thèse. En utilisant la forme duale d'un problème d'optimisation, l'algorithme projète l'état sur un zonotope qui forme l'envelope de l'ensemble des contraintes auxquelles l'état est soumis. La complexité de l'algorithme est ensuite améliorée en remplaçant le zonotope initial par une forme réduite en limitant son nombre de générateurs.

Title : Contribution to ellipsoidal and zonotopic set-membership state estimation

Abstract : In the context of dynamical systems, this thesis focuses on the development of robust set-membership state estimation procedures for different classes of systems. We consider the case of standard linear time-invariant systems, subject to unknown but bounded perturbations and measurement noises. The first part of this thesis builds upon previous results on ellipsoidal set-membership approaches. An extended ellipsoidal set-membership state estimation technique is applied to a model of an octorotor used for radar applications. Then, an extension of this ellipsoidal state estimation approach is proposed for descriptor systems. In the second part, we propose a state estimation technique based on the minimization of the P-radius of a zonotope, applied to the same model of the octorotor. This approach is further extended to deal with piecewise affine systems. In the continuity of the previous approaches, a new zonotopic constrained Kalman filter is proposed in the last part of this thesis. By solving a dual form of an optimization problem, the algorithm projects the state on a zonotope forming the envelope of the set of constraints that the state is subject to. Then, the computational complexity of the algorithm is improved by replacing the original possibly large-scale zonotope with a reduced form, by limiting its number of generators.

Mots-clés : Estimation d'état ensembliste, inégalité matrice linéaire, zonotopes, ellipsoides

Keywords : Set-membership state estimation, linear matrix inequality, zonotopes, ellipsoids

 

«Trajectoires optimales et commande prédictive d'un quadricoptère pour la réalisation de plans de vol cinématographiques » « Optimal trajectory planning and predictive control for cinematographic flight plans with quadrotors »

Gauthier ROUSSEAU
Thesis defended on October 18, 2019, 10:00 AM at

  CentraleSupélec (Gif-sur-Yvette) - Bâtiment Bouygues - Amphi SC.071

 

Membres du jury:

Mme Cristina STOICA MANIU            L2S/CentraleSupélec Directrice de thèse
M. Mathieu BABEL  Parrot Drones Co-encadrant
Mme Sihem TEBBANI L2S/CentraleSupélec Co-encadrante
M. Nicolas MARTIN Parrot Drones Co-encadrant - invité
M. Sylvain BERTRAND ONERA Examinateur
M. Pedro CASTILLO-GARCIA Université de Technologie de Compiègne Examinateur
M. Nicolas LANGLOIS ESIGELEC/IRSEEM Examinateur
M. Nicolas PETIT  Mines ParisTech Rapporteur
M. Didier THEILLIOL Université de Lorraine Rapporteur

 

Résumé: Cette thèse s'intéresse à la réalisation autonome de plans de vol cinématographiques par un quadrotor équipé d'une caméra. Ces plans de vol consistent en une série de points de passage à rejoindre successivement, en adoptant diverses méthodes de prise de vue et en respectant des références de vitesse ainsi que des couloirs de vols. Une étude approfondie de la dynamique du quadrotor est tout d'abord proposée, et utilisée pour construire un modèle linéarisé du drone autour de l'équilibre de vol stationnaire. L'analyse de ce modèle linéaire permet de mettre en évidence l'impact de l'inertie des rotors du drone dans sa dynamique, notamment l'apparition d'un comportement à non minimum de phase en roulis ou tangage, lorsque les moteurs sont inclinés. Dans un second temps, deux algorithmes de génération de trajectoires lisses, faisables et adaptées à la cinématographie sont proposés. La faisabilité de la trajectoire est garantie par le respect de contraintes sur ses dérivées temporelles, adaptées pour la cinématographie et obtenues grâce à l'étude du modèle non linéaire du drone. Le premier repose sur une optimisation bi-niveaux d'une trajectoire polynomiale par morceaux, dans le but de trouver la plus rapide des trajectoires à minimum de jerk permettant d'accomplir la mission. Le second algorithme consiste en la génération de trajectoires B-spline non-uniformes à durée minimale. Pour les deux solutions, une étude de l’initialisation du problème d'optimisation est présentée, de même qu'une analyse de leurs avantages et limitations. Pour ce faire, elles sont notamment confrontées à des simulations et vols extérieurs. Enfin, une loi de commande prédictive est proposée pour asservir les mouvements de la caméra embarquée de manière douce mais précise.

Abstract: This thesis deals with the autonomous performance of cinematographic flight plans with camera equipped quadrotors. These flight plans consists in a series of waypoints to join while adopting various camera behaviors, along with speed references and flight corridors. First, an in depth study of the nonlinear dynamics of the drone is proposed, which is then used to derive a linear model of the system near the hovering equilibrium. An analysis of this linear model allows us to emphasize the impact of the inertia of the propellers when the latter are tilted, such as the apparition of a non minimum phase behavior of the pitch or dynamics. Then, two algorithms are proposed to generate smooth and feasible trajectories suited for cinematography. The feasibility of the trajectory is ensured by constraints on its time derivatives, suited for cinematography and obtained with the use of the nonlinear model of the drone. The first algorithm proposed in this work is based on a bi-level optimization of a piecewise polynomial trajectory and try to find the fastest feasible minimum jerk trajectory to perform the flight plan. The second algorithm consists in the generation of feasible, minimum time, non uniform B-spline. For both solutions, a study of the initialization of the optimization problem is proposed, as well as a discussion about their advantages and limitations. To this aim, they are notably confronted to simulations and outdoor flight experiments. Finally, a predictive control law is propose to smoothly but accurately control the on-board camera.

 

 

 

 

Commande de systèmes plats avec contraintes et Applications de la Commande sans Modèle aux quadrotors et au Cloud Computing

Madame Maria BEKCHEVA
Thesis defended on July 11, 2019, 2:30 PM at

   CentraleSupélec, 3 rue Joliot Curie, 91192, Gif-sur-Yvette 
Salle : Amphi II, Bât. Eiffel

 

Composition du jury proposé :

M. Hugues MOUNIER Université Paris-Sud Directeur de thèse
M. Luca GRECO Université Paris-Sud Co-directeur de thèse
M. Emmanuel DELALEAU ENIB Rapporteur
M. Didier THEILLIOL CRAN Rapporteur
Mme Mireille BAYART CRISTAL Examinateur
M. Michel FLIESS Laboratoire LIX - Ecole Polytechnique Examinateur
M. Cédric JOIN CRAN Examinateur
M. Silviu Iulian NICULESCU CNRS- L2S-CentraleSupelec Examinateur

Résumé : 

La première partie de la thèse est consacrée à la commande avec contraintes de systèmes différentiellement plats. Deux types de systèmes sont étudiés : les systèmes non linéaires de dimension finie et les systèmes linéaires à retards. Nous présentons une approche unifiée pour intégrer les contraintes d'entrée/état/sortie dans la planification des trajectoires. Pour cela, nous spécialisons les sorties plates (ou les trajectoires de référence) sous forme de courbes de Bézier. En utilisant la propriété de platitude, les entrées/états du système peuvent être exprimés sous la forme d'une combinaison de sorties plates (courbes de Bézier) et de leurs dérivées. Par conséquent, nous obtenons explicitement les expressions des points de contrôle des courbes de Bézier d'entrées/états comme une combinaison des points de contrôle des sorties plates. En appliquant les contraintes souhaitées à ces derniers points de contrôle, nous trouvons les régions faisables pour les points de contrôle de Bézier de sortie, c'est-à-dire un ensemble de trajectoires de référence faisables. Ce cadre permet d’éviter le recours, en général fort coûteux d’un point de vue informatique, aux schémas d’optimisation.     Pour résoudre les incertitudes liées à l'imprécision de l'identification et modélisation des modèles et les perturbations, nous utilisons la commande sans modèle (Model Free Control-MFC) et dans la deuxième partie de la thèse, nous présentons deux applications démontrant l'efficacité de notre approche : Nous proposons une conception de contrôleur qui évite les procédures d'identification du système du quadrotor tout en restant robuste par rapport aux perturbations endogènes (la performance de contrôle est indépendante de tout changement de masse, inertie, effets gyroscopiques ou aérodynamiques) et aux perturbations exogènes (vent, bruit de mesure). Pour atteindre notre objectif en se basant sur la structure en cascade d'un quadrotor, nous divisons le système en deux sous-systèmes de position et d'attitude contrôlés chacun indépendamment par la commande sans modèle de deuxième ordre dynamique. Nous validons notre approche de contrôle avec trois scénarios réalistes : en présence d'un bruit inconnu, en présence d’un vent variant dans le temps et en présence des variations inconnues de masse, tout en suivant des manœuvres agressives. Nous utilisons la commande sans modèle et les correcteurs « intelligents » associés, pour contrôler (maintenir) l'élasticité horizontale d'un système de Cloud Computing. Comparée aux algorithmes commerciaux d’Auto-Scaling, notre approche facilement implémentable se comporte mieux, même avec de fluctuations aigües de charge. Ceci est confirmé par des expériences sur le cloud public Amazon Web Services (AWS).

Mots-clés :

Platitude différentielle, Commande sans modèle, Commande des systèmes avec contraintes, Quadrotors, Cloud Computing.

COMMANDE PREDICTIVE POUR LE VEHICULE AUTONOME

Iris BALLESTEROS-TOLOSANA
Thesis defended on January 26, 2018, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-05

The thesis work contained in this manuscript is dedicated to the Advanced Driving Assistance Systems, which has become nowadays a strategic research line in many car companies. This kind of systems can be seen as a first generation of assisted or semi-autonomous driving, that will set the way to fully automated vehicles. The first part of this memory focuses on the analysis and control of lateral dynamics control applications - Autosteer by target tracking and the Lane Centering Assistance System (LCA). In this framework, safety plays a key role, bringing into focus the application of different constrained control techniques for linear parameter-varying (LPV) models. Model Predictive Control (MPC) and Interpolation Based Control (IBC) have been the ones privileged in the present work. In addition, it is a critical feature to design robust control systems that ensure a correct behavior under system’s variation of parameters or in the presence of uncertainty. Robust Positive Invariance (RPI) theory tools are considered to design robust LPV control strategies with respect to large vehicle speed variations and curvature of the road changes. The second axis of this thesis is the optimization-based trajectory planning for overtaking and lane change in highways with anti-collision enhancements. To achieve this goal, an exhaustive description of the possible scenarios that may arise is presented, allowing to formulate an optimization problem which maximizes passenger comfort and ensures system constraints’ satisfaction.

Mots-clés :

COMMANDE,PREDICTIVE,VEHICULE,TEMPO,TRAJECTOIRE

Composition du jury proposé

M. Antonios TZES   NYU Abu Dhabi   Rapporteur

M. Arben CELA   Université Paris-Est, ESIEE Paris   Rapporteur

M. Saïd MAMMAR   Université d'Evry Val-d'Essonne   Examinateur

M. Eduardo FERNANDEZ CAMACHO   Universidad de Sevilla  Examinateur

M. François FAUVEL   Renault SAS   Examinateur

M. Sorin OLARU   CentraleSupelec   Directeur de these

M. Pedro RODRIGUEZ AYERBE   CentraleSupelec   CoDirecteur de these

M. Renaud DEBORNE   Renault SAS   Invité

M. Guillermo PITA GIL   Renault SAS   Invité

Evaluation de performance d’une ligne ferroviaire suburbaine partiellement équipée d’un automatisme CBTC

Juliette POCHET
Thesis defended on January 12, 2018, 10:30 AM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40

En zone dense, la croissance actuelle du trafic sur les lignes ferroviaires suburbaines conduit les exploitants à déployer des systèmes de contrôle-commande avancés des trains, tels que les systèmes dits « CBTC » (Communication Based Train Control) jusque-là réservés aux systèmes de métro. Les systèmes CBTC mettent en œuvre un pilotage automatique des trains et permettent une amélioration significative des performances. Par ailleurs, ils peuvent inclure un module de supervision de la ligne en charge de réguler la marche des trains en cas d’aléa, améliorant ainsi la robustesse du trafic. Face au problème de régulation, la recherche opérationnelle a produit un certain nombre de méthodes permettant de répondre efficacement aux perturbations, d’une part dans le secteur métro et d’autre part dans le secteur ferroviaire lourd. En tirant profit de l’état de l’art et des avancées faites dans les deux secteurs, les travaux présentés dans ce manuscrit cherchent à contribuer à l’adaptation des fonctions de régulation des systèmes CBTC pour l’exploitation de lignes ferroviaires suburbaines. L’approche du problème débute par la construction de l’architecture fonctionnelle d’un module de supervision pour un système CBTC standard. Nous proposons ensuite une méthode de régulation basée sur une stratégie de commande prédictive et sur une optimisation multi-objectif des consignes des trains automatiques. Afin d’être en mesure d’évaluer précisément les performances d’une ligne ferroviaire suburbaine équipée d’un automatisme CBTC, il est nécessaire de s’équiper d’un outil de simulation microscopique adapté. Nous présentons dans ce manuscrit l’outil SNCF nommé SIMONE qui permet une simulation réaliste du point de vue fonctionnel et dynamique d’un système ferroviaire incluant un système CBTC. Les objectifs des travaux de thèse nous ont naturellement conduits à prendre part, avec l’équipe SNCF, à la spécification, à la conception et à l’implémentation de cet outil. Finalement, grâce à l’outil SIMONE, nous avons pu tester la méthode de régulation proposée sur des scénarios impliquant des perturbations. Afin d’évaluer la qualité des solutions, la méthode multi-objectif proposée a été comparée à une méthode de régulation individuelle basée sur une heuristique simple. La méthode de régulation multi-objectif propose de bonnes solutions au problème, dans la majorité des cas plus satisfaisantes que celles proposées par la régulation individuelle, et avec un temps de calcul jugé acceptable. Le manuscrit se termine par des perspectives de recherche intéressantes.

Membres du jury :

M. Guillaume SANDOU, Professeur, CentraleSupélec, FRANCE - Directeur de thèse
M. Joaquin RODRIGUEZ, Directeur de Recherche, Ifsttar, FRANCE - Rapporteur
M. François DELMOTTE, Professeur, Université d'Artois, FRANCE - Rapporteur
M. Sylvain BARO, Ingénieur, SNCF Réseau, FRANCE - Examinateur
Mme Sihem TEBBANI, Professeure, CentraleSupélec, FRANCE - Examinateur
Mme Evguenia DMITRIEVA, Ingénieur, RATP, FRANCE - Examinateur

Analyse de stabilité des systèmes à des coefficients qui dépendent du retard.

Chi Jin
Thesis defended on November 21, 2017, 4:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Ampère

Des systèmes  avec des coefficients dépendant du retard  ont  été rencontrés dans diverses  applications de la science et de l'ingénierie. Malgré la littérature abondante  sur les systèmes  de temporisation, il y a peu  de résultats concernant l'analyse  de stabilité des systèmes  avec  des coefficients dépendant du retard. Cette  thèse  est  consacrée  à l'analyse de stabilité de cette  classe de systèmes.  Les méthodes d'analyse  de la stabilité sont développées  à partir de l'équation caractéristique correspondante suivant une approche  généralisée  $ tau  $ -décomposition. Étant  donné un intervalle d'intérêt de retard, nous sommes  capables  d'identifier toutes  les valeurs  de retard critique  contenues  dans  cet intervalle pour lesquelles   l'équation  caractéristique admet   des  racines  sur  l'axe  imaginaire du  plan  complexe.   Le critère   de  direction  de  croisement  des   racines  sont   proposées   pour   déterminer  si  ces  racines caractéristique se déplacent vers  le plan  complexe  demi-gauche ou demi-droite lorsque  le paramètre de retard passe par ces valeurs de retard  critique. Le nombre de racines caractéristiques instables  pour un retard donné peut  ainsi être  déterminé. Notre  analyse  comprend les systèmes  avec un seul retard ou  des  retards proportionnés sous  certaines   hypothèses.  Le critère de  direction de  croisement  des racines  développés  dans cette  thèse  peut  être  appliqués  aux multiple racines  caractéristiques, ou aux racines  caractéristiques dont  la position paramétrée par  le retard est  tangent  à l'axe  imaginaire. En tant  qu'application, il est  démontré que  les  systèmes   avec  des  coefficients dépendant  du  retard peuvent provenir de schémas  de contrôle  qui utilisent une sortie  retardée pour approcher ses dérivés pour  la stabilisation. Les méthodes d'analyse  de stabilité développées  dans cette  thèse  sont adaptées et appliquées  pour trouver les intervalles de retard qui atteignent un taux  de convergence demandé du système  en boucle fermée.

Mots clés : Systèmes à retard, Coefficients à retardement, Analyse de stabilité, Conception de contrôle, Approche géométrique, Analyse paramétrique.

Composition du jury

M. Islam BOUSSAADA PSA & Laboratoire des Signaux et Systèmes  (L2S) Université Paris Saclay CentraleSupélec-CNRS-Université Paris Sud  Directeur de thèse

M. Rifat SIPAHI  Mechanical and Industrial Engineering,Northeastern University  Rapporteur

M. Vladimir RASVAN Universitatea din Craiova Rapporteur

M. Yang KUANG College of Liberal Arts and Sciences, Arizona State University Rapporteur

M Gabor STEPAN Department of Applied Mechanics, Budapest University of Technology   and Economies Examinateur

Mme Catherine  BONNET INRIA Saclay - Ile-de-France and L2S,CentraleSupelec Examinateur

M. Silviu Niculescu L2S-CENTRALESUPELEC, CNRS Co-directeur de thèse

M. Keqin GU Southern Illinois University Edwardsville Co-directeur de thèse

Understanding Cell Dynamics in Cancer from Control and Mathematical Biology Standpoints: Particular Insights into the Modeling and Analysis Aspects in Hematopoietic Systems and Leukemia

WALID DJEMA
Thesis defended on November 21, 2017, 1:30 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40

Medical research is looking for new combined targeted therapies against cancer. Our research project -which involves intensive collaboration with hematologists from Saint-Antoine Hospital in Paris- is imbued within a similar spirit and fits the expectations of a better understanding of the behavior of blood cell dynamics. In fact, hematopoiesis provides a paradigm for studying all the mammalian stem cells, as well as all the mechanisms involved in the cell cycle. We address multiple issues related to the modeling and analysis of the cell cycle, with particular insights into the hematopoietic systems. Stability features of the models are highlighted, since trajectories of the systems reflect the most prominent healthy or unhealthy behaviors of the biological process under study. We indeed perform stability analyses of systems describing healthy and unhealthy situations, with a particular interest in the case of acute myeloblastic leukemia (AML). Thus, we pursue the objectives of understanding the interactions between the various parameters and functions involved in the mechanisms of interest. For that purpose, an advanced stability analysis of the cell fate evolution in treated or untreated leukemia is performed in several modeling frameworks, and our study suggests new anti-leukemic combined chemotherapy. Throughout the thesis, we cover many biological evidences that are currently undergoing intensive biological research, such as: cell plasticity, mutations accumulation, cohabitation between ordinary and mutated cells, control and eradication of cancer cells, cancer dormancy, etc.

Among the contributions of Part I of the thesis, we can mention the extension of both modeling and analysis aspects in order to take into account a proliferating phase in which most of the cells may divide, or die, while few of them may be arrested during their cycle for unlimited time. We also introduce for the first time cell-plasticity features to the class of systems that we are focusing on.

Next, in Part II, stability analyses of some differential-difference cell population models are performed through several time-domain techniques, including tools of Comparative and Positive Systems approaches. Then, a new age-structured model describing the coexistence between cancer and ordinary stem cells is introduced. This model is transformed into a nonlinear time-delay system that describes the dynamics of healthy cells, coupled to a nonlinear differential-difference system governing the dynamics of unhealthy cells. The main features of the coupled system are highlighted and an advanced stability analysis of several coexisting steady states is performed through a Lyapunov-like approach for descriptor-type systems. We pursue an analysis that provides a theoretical treatment framework following different medical orientations, among which: i) the case where therapy aims to eradicate cancer cells while preserving healthy ones, and ii) a less demanding, more realistic, scenario that consists in maintaining healthy and unhealthy cells in a controlled stable dormancy steady-state. Mainly, sufficient conditions for the regional exponential stability, estimate of the decay rate of the solutions, and subsets of the basins of attraction of the steady states of interest are provided. Biological interpretations and therapeutic strategies in light of emerging AML-drugs are discussed according to our findings.

Finally, in Part III, an original formulation of what can be interpreted as a stabilization issue of population cell dynamics through artificial intelligence planning tools is provided. In that framework, an optimal solution is discovered via planning and scheduling algorithms. For unhealthy hematopoiesis, we address the treatment issue through multiple drug infusions. In that case, we determine the best therapeutic strategy that restores normal blood count as in an ordinary hematopoietic system.

Mots-clés :  Analyse de stabilité, PDEs et Systèmes à retards, Théorie de Lyapunov, Modélisation des systèmes biologiques, Analyse des systèmes biologiques, Cancer, Dynamique des populations cellulaires, Hématopoïèse, Leucémie.

Composition du jury proposé
Mme Catherine BONNET     CentraleSupélec     CoDirecteur de thèse
M. Jean CLAIRAUMBAULT     Inria Paris, Sorbonne Paris 6     CoDirecteur de thèse
M. Frédéric MAZENC     Inria Saclay, CNRS, CentraleSupélec     CoDirecteur de thèse
Mme Françoise LAMNABHI-LAGARRIGUE     CNRS, L2S, CentraleSupélec     Examinateur
M. Raphaël  ITZYKSON     Hôpital Saint-Louis Paris     Examinateur
M. Alexander MEDVEDEV     Uppsala University, Sweden     Examinateur
M. Mostafa ADIMY     Inria Grenoble-Rhone Alpes     Rapporteur
M. Pierdomenico  PEPE     University of L'Aquila, Italy     Rapporteur

Systèmes eco-routing adaptatifs de navigation dépendant du temps avec des contraintes

Matej KUBICKA
Thesis defended on November 16, 2017, 3:30 PM at CentraleSupelec (Gif-sur-Yvette)

L'éco-routage est une méthode de navigation de véhicule qui choisit les routes tout  en minimisant la consommation de carburant, la consommation d'énergie ou les émissions polluantes pour un voyage vers une destination donnée.  C'est l'une des techniques qui tentent de réduire le coût opérationnel  du véhicule ou l'empreinte environnementale. Ce travail passe en revue  les méthodes actuelles d'éco-routage et propose une nouvelle méthode  conçue pour surmonter leurs lacunes. La plupart des méthodes actuelles attribuent à chaque route du réseau  routier un coût constant qui représente la consommation du véhicule ou  la quantité de polluants émis, puis utilisent un algorithme de routage  optimal pour trouver le chemin qui minimise la somme des coûts. Diverses extensions sont considérées dans la littérature. L'éco-routage  contraint permet d'imposer des limites au temps de déplacement, à la  consommation d'énergie et aux émissions polluantes. L'éco-routage  dépendant du temps permet le routage sur un graphique avec des coûts qui sont des fonctions du temps. L'éco-routage adaptatif permet d'adapter  la solution de routage écologique si elle devient invalide en raison  d'un développement inattendu sur la route. Il existe des méthodes  optimales de routage écologique qui résolvent soit l'éco-routage basé  sur le temps, soit l'éco-routage contraint ou l'éco-routage adaptatif.  Tous comportent des frais généraux de calcul considérablement plus  élevés en ce qui concerne l'éco-routage standard et, selon les  meilleures connaissances de l'auteur, il n'existe pas de méthode publiée qui appuie la combinaison des trois : routage écologique adaptatif  dépendant du temps restreint. Dans ce travail, on argumente que les  coûts de routage utilisé sont très incertains en raison de leur  dépendance à l'égard du trafic immédiat autour du véhicule, du  comportement du conducteur et d'autres perturbations. On soutient en  outre que, étant donné que ces coûts sont incertains, il y a peu  d'avantages à utiliser un routage optimal, car l'optimalité de la  solution ne tient que tant que les coûts de routage sont corrects. Au  lieu de cela, une méthode d'approximation est proposée dans ce travail.  Les frais généraux calculés sont plus faibles sachant que la solution  n'est pas nécessairement optimale. Cela permet l'éco-routage adaptatif  dépendant du temps restreint.

Mots-clés : 

eco-routing,map-matching,systèmes de navigation,

 

Composition du jury proposé
M. Hugues MOUNIER     Université Paris-Sud     Directeur de these
M. René NATOWICZ     ESIEE Paris     Rapporteur
M. Antonio SCIARRETTA     IFP Energies nouvelles     Examinateur
M. Arben CELA     ESIEE Paris     Examinateur
Mme Brigitte D'ANDRéA-NOVEL     Mines ParisTech     Examinateur
Mme Dorothée NORMAND CYROT     L2S-CentraleSupelec     Examinateur
M. Michel BASSET     Laboratoire MIPS     Rapporteur
M. Philippe MOULIN        IFPEN     Invité
M. Silviu-Iulian NICULESCU        L2S-CentraleSupelec     Invité

Robustesse de la commande prédictive explicite

Rajesh KODURI
Thesis defended on October 28, 2017, 1:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Mesny

Composition du jury proposé

M. Pedro RODRIGUEZ-AYERBE    CentraleSupélec   Directeur de these

Mme Alexandra  GRANCHAROVA  University of Chemical Technology and Metallurgy, Bulgaria  Rapporteur

M. Sorin OLARU  CentraleSupélec  CoDirecteur de these

M. Georges  BITSORIS  University of Patras  Rapporteur

M. Mounier HUGUES  CentraleSupélec  Examinateur

M. Carlos Eduardo Trabuco DOREA  Universidade Federal do Rio Grande do Norte  Examinateur

M. Shyam  KAMAL  Indian Institute of Technology, BHU  Examinateur

Mots-clés :

Robustesse,prédictive,commande,explicite,

Résumé : 

Les techniques de conception de lois de commande pour les systèmes linéaires ou hybrides avec contraintes conduisent souvent à des partitions de l'espace d'état avec des régions polyédriques convexes. Ceci correspond à des lois de commande par retour d'état affine (PWA) par morceaux associées à une partition polyédrale de l'espace d'état. De telles lois de commande peuvent être effectivement mises en œuvre sur des plateformes matérielles pour des applications de commande en temps réel. Cependant, la robustesse des solutions explicites dépend de la précision du modèle mathématique des systèmes dynamiques. Les incertitudes dans le modèle du système posent de sérieux défis en ce qui concerne la stabilité et la mise en œuvre des lois de commande affines par morceaux. Motivé par les défis auxquels font face les solutions explicites par rapport aux incertitudes dans les modèles des systèmes dynamiques, cette thèse est principalement axée sur leur analyse et à leur retouche. La première partie de cette thèse vise à calculer les marges de robustesse pour une loi de commande PWA nominale donnée obtenue pour un système de temps discret linéaire. Les marges de robustesse classiques, c'est-à-dire la marge de gain et la marge de phase, considèrent la variation de gain et la variation de phase du modèle pour lequel la stabilité de la boucle fermée est préservée. La deuxième partie de la thèse vise à considérer des perturbations dans la représentation des sommets des régions polyédriques. Les partitions de l’espace d'état quantifiées perdent une partie des propriétés importantes des contrôleurs explicites: « non-chevauchement », « convexité » et/ou « invariance ». Deux ensembles différents appelés sensibilité aux sommets et marge de sensibilité sont déterminés pour caractériser les perturbations admissibles, en préservant respectivement la propriété de non-chevauchement et d'invariance du contrôleur. La troisième partie vise à analyser la complexité des solutions explicites en termes de temps de calcul et de mémoire. Une première comparaison entre les évaluations séquentielles et parallèles des fonctions PWA par l'algorithme ADMM (Alternating Direction Method of Multiplier) est faite. Ensuite, la complexité computationnelle des évaluations parallèles des fonctions PWA pour l'algorithme de couverture progressive (PHA) sur l'unité centrale de traitement (CPU) et l'unité de traitement graphique (GPU) est comparée.

Modélisation du contrôle moteur humain lors de tâches rythmiques hybrides et application à la commande de robots anthropomorphes

Guillaume AVRIN
Thesis defended on October 04, 2017, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle du conseil du L2S - B4.40

Composition du jury proposé

 

Mme Isabelle SIEGLER                 Université Paris-sud Directeur de these

M. Hénaff PATRICK                     Mines Nancy Rapporteur

M. Julien LAGARDE                      University Montpellier Rapporteur

M. Antoine CHAILLET                          CentraleSupélec Examinateur

M. Antoine MORICE                            Université Aix-Marseille Examinateur

M. Pedro RODRIGUEZ-AYERBE        CentraleSupélec CoDirecteur de these

Mme Maria MAKAROV                        CentraleSupélec CoDirecteur de these

M. Raoul HUYS                                    Université Paul Sabatier (Toulouse 3) Examinateur

 

Mots-clés :

contrôle moteur humain,systèmes dynamiques,oscillateurs neuronaux,couplages

information-mouvement,coordination visuo-manuelle rythmique

 

La recherche portant sur l'identification des principes neurobiologiques qui sous-tendent le contrôle moteur humain est actuellement très active. Les mouvements humains ont en effet un niveau de robustesse et de dextérité encore inégalé dans la réalisation robotique de tâches complexes.

L'objectif est donc de mieux comprendre l'origine de cette performance et de la reproduire en robotique bio-inspirée. Il a déjà été démontré que des réseaux spinaux rythmiques sont présents dans la moelle épinière des vertébrés. Ils constituent des systèmes dynamiques non-linéaires composés de neurones en inhibition réciproque et seraient à l’origine de la génération des mouvements rythmiques comme la locomotion et la respiration. Les attracteurs de ces systèmes dynamiques seraient modulés de manière continue ou intermittente par des signaux sensoriels et des signaux descendant du cortex moteur, de manière à adapter le comportement de l’agent à la dynamique de l’environnement. La présente étude émet l'hypothèse que des informations visuelles sont également couplées aux réseaux spinaux rythmiques et que ces couplages sont responsables des synchronisations temporelles et spatiales observées lors de la réalisation de tâches visuomotrices rythmiques. Cette proposition est confrontée à des résultats expérimentaux de frappe  cyclique de balle, un benchmark bien connu des neuroscientifiques et des dynamiciens en raison de ses propriétés dynamiques intrinsèques. Il rend possible à la fois l’étude de la génération de mouvements rythmiques par des réseaux spinaux, la synchronisation temporelle avec  l’environnement, la correction en-ligne des erreurs spatiales et l’interception de projectiles  balistiques. Cette thèse propose ainsi un modèle comportemental mathématique innovant reposant sur un modèle d’oscillateur neuronal dont l’attracteur, qui définit les trajectoires de la raquette, est modulé en ligne par les perceptions visuelles de la trajectoire de la balle. La pertinence du modèle  est validée par comparaison aux données expérimentales et aux modèles précédemment proposés dans la littérature. La robustesse de cette stratégie de contrôle est également quantifiée par une analyse de stabilité asymptotique du système hybride défini par le couplage entre le système neuromusculo- squelettique et la balle. Le correcteur bio-inspiré proposé dans cette thèse réunit de manière harmonieuse un contrôle prospectif de la synchronisation balle-raquette, un contrôle paramétrique intermittent dimensionnant le mouvement et un contrôle émergeant du cycle-limite du système couplé. Il reproduit efficacement les modulations des actions motrices et les performances des humains durant la tâche de frappe cyclique de balle, y compris en présence de perturbations, et  ce sans avoir recours à une planification du mouvement ou à des représentations internes explicites de l’environnement. Les résultats de cette étude conduisent à l’affirmation réaliste que les mouvements humains sont directement structurés par l’information sensorielle disponible et par des stratégies correctives en-ligne, en accord avec la théorie des dynamiques comportementales. Cette architecture de contrôle pourrait offrir de nombreux avantages aux robots humanoïdes qui en seraient munis, en assurant stabilité et économie d’énergie, par l’intermédiaire de lois de commande de faible complexité et peu gourmandes en ressources computationnelles.

Analyse de stabilité, ordonnancement, et synthèse des systèmes cyber-physiques, Stability verification, scheduling, and synthesis of cyber-physical systems

Mohammad AL KHATIB
Thesis defended on September 29, 2017, 10:30 AM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S

Composition du jury:

SOPHIE  TARBOURIECH  DIRECTRICE DE RECHERCHE      CNRS DELEGATION MIDI-PYRENEES                       Examinateur
LAURENTIU  HETEL         CHARGE DE RECHERCHE             CNRS NORD-PAS DE CALAIS ET PICARDIE             Rapporteur
MAURICE HEEMELS        PROFESSEUR                                  UNIVERSITE TECH. EINDHOVEN - PAYS-BAS          Rapporteur
MANUEL MAZO                PROFESSEUR ASSISTANT             UNIVERSITE TECHNOLOGIE DELFT - PAYS-BAS     Examinateur
ANTOINE  GIRARD          DIRECTEUR DE RECHERCHE        CNRS DELEGATION ILE-DE-FRANCE SUD                Directeur de thèse
THAO  DANG                    DIRECTRICE DE RECHERCHE       CNRS DELEGATION ALPES                                        CoDirecteur de thèse

Résumé : 

Il s'agit d'une étude menée sur les systèmes cyber-physiques sur trois aspects principaux: la vérification de la stabilité, l'ordonnancement et la synthèse des paramètres. Les systèmes de contrôle embarqués (ECS) agissant dans le cadre de contrats temporels sont la classe considérée de systèmes cyber-physiques dans la thèse. ECS fait référence à des intégrations d'un dispositif informatique avec le système physique. En ce qui concerne les contrats temporels, ils sont des contraintes de temps sur les instants où se produisent certains événements tels que l'échantillonnage, l'actionnement et le calcul. Ces contrats sont utilisés pour modéliser les problèmes qui se posent dans les systèmes de contrôle modernes: incertitudes sur les retards d'actionnement, les périodes d'échantillonnage incertaines et l'interaction de plusieurs systèmes physiques avec des ressources informatiques partagées (CPUs). Maintenant, compte tenu d'un ECS et d'un contrat temporel, nous reformulons le système de manière impulsionnelle et vérifions la stabilité du système, sous toutes les incertitudes bornées et données par le contrat, en utilisant des techniques d'approximation convexe et de nouveaux résultats généralisés pour le problème sur une classe de systèmes modélisés dans le cadre des inclusions différentielles. Deuxièmement, compte tenu d'un ensemble de contrôleurs implémentés sur une plate-forme de calcul commune (CPUs), dont chacun est soumis à un contrat de synchronisation, et à son meilleur et son plus mauvais cas d'exécution dans chaque CPU, nous synthétisons une politique d’ordonnancement dynamique qui garantit que chaque contrat temporel est satisfait et que chacun des CPU partagés est attribué à au plus un contrôleur à tout moment. L'approche est basée sur une reformulation qui nous permet d'écrire le problème d’ordonnancement comme un jeu temporelle avec spécification de sureté. Ensuite, en utilisant l'outil UPPAAL-TIGA, une solution au jeu fournit une politique d’ordonnancement appropriée. En outre, nous fournissons une nouvelle condition nécessaire et suffisante pour l’ordonnancement des tâches de contrôle en fonction d’un jeu temporisé simplifiés. Enfin, nous résolvons un problème de synthèse de paramètres qui consiste à synthétiser une sous-approximation de l'ensemble des contrats de synchronisation qui garantissent en même temps l’ordonnancement et la stabilité des contrôleurs intégrés. La synthèse est basée sur un nouveau paramétrage du contrat temporel pour les rendre monotones, puis sur un échantillonnage à plusieurs reprises de l'espace des paramètres jusqu'à atteindre une précision d'approximation prédéfinie.

Approche bayésienne pour l'optimisation multiobjectif sous contraintes

Paul Feliot
Thesis defended on July 12, 2017, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Janet

Ces travaux de thèse portent sur l'optimisation continue multiobjectif de fonctions à valeurs réelles sous contraintes d'inégalités. En particulier, nous nous intéressons à des problèmes pour lesquels les fonctions objectifs et les contraintes sont évaluées au moyen d'un programme informatique coûteux en temps de calcul, avec par conséquent une limite importante sur le nombre d'appels au programme informatique (quelques centaines d'appels au plus).

Afin de résoudre ce problème, nous proposons dans cette thèse un algorithme d'optimisation baptisé BMOO, pour Bayesian Multi-Objective Optimization. Cet algorithme d'optimisation s'appuie sur une fonction de perte mesurant le volume de l'espace dominé par les observations courantes, ce dernier étant défini au moyen d'une règle de domination étendue permettant de comparer des solutions à la fois selon les valeurs des objectifs et des contraintes. Le critère ainsi défini généralise plusieurs critères classiques d'amélioration espérée issus de la littérature.  Il prend la forme d'une intégrale définie sur l'espace des objectifs et des contraintes pour laquelle aucune forme analytique n'est connue dans le cas général. De plus, il doit être optimisé à chaque itération de l'algorithme. Afin de résoudre ces difficultés, des algorithmes de type Monte-Carlo séquentiel sont proposés.  L'efficacité de BMOO est illustrée à la fois sur des cas tests académiques et sur quatre problèmes d'optimisation tirés d'applications industrielles et donne des résultats très satisfaisants en pratique.

Mots-clés : optimisation bayésienne, processus gaussiens, Monte-Carlo séquentiel, krigeage

Composition du jury

M.  Patrice AKNIN                   DR IRT SystemX          Examinateur
Mme Anne AUGER                 INRIA                            Examinateur
M.  Julien BECT                      CentraleSupélec           Encadrant
M.  Sébastien DA VEIGA        Safran Tech                  Examinateur
M.  David GINSBOURGER     Université de Ben        Rapporteur
M.  Luc PRONZATO                DR CNRS                    Rapporteur
M.  Serge GRATTON              Professeur CERFACS  Examinateur
M.  Emmanuel VAZQUEZ       CentraleSupélec          Directeur de thèse

Stabilisation d'une classe des systèmes non linéaires avec propriétés de passivité

Luis BORJA ROSALES
Thesis defended on July 06, 2017, 3:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S

Dans cette  thèse, nous  abordons le problème de la stabilisation des  systèmes non linéaires. En particulier, nous  nous  concentrons sur  les  modèles où l'énergie joue  un rôle fondamental. Ce  cadre énergétique est adapté  pour   capturer  les   phénomènes de plusieurs  domaines  physiques  tels   que   les   systèmes mécaniques, les systèmes électriques, les systèmes hydrauliques, etc. Le point de départ des contrôleurs proposés sont   les  concepts de  système  passif, des sorties  passives et des fonctions  d'énergie  (ou stockage).  Dans   ce   travail,   nous   étudions  deux   classes  de  systèmes  dynamiques,  à   savoir   les Hamiltoniens à  ports  (PH)  et  les  Euler-Lagrange (EL), qui  conviennent pour  représenter de  nombreux processus physiques. Une première étape vers la construction des  contrôleurs est  de montrer  la passivité des  systèmes PH et la caractérisation  de  leurs sorties passives. Par  la  suite,  nous explorons l'utilisation des  différentes sorties passives dans deux techniques bien connues de contrôle  par passivité (PBC), c'est- à-dire le  contrôle par interconnexion (CbI)  et  l'équilibrage  énergétique  (EB),  et  nous comparons les résultats obtenus dans les  deux  approches. De  plus,  nous  proposons une  nouvelle méthodologie dans laquelle   la  loi  de   commande  est   composée  d'un   terme   proportionnel  (P),  un  terme   intégral   (I)  et, éventuellement, un terme  dérivatif (D) de  la sortie  passive. Dans  cette  stratégie, l'énergie du système en boucle  fermée est  façonnée sans qu'il soit nécessaire de  résoudre des  équations différentielles partielles (PDE).   Nous   analysons  le   scénario  du   régulateur  PID   à   l'aide   des  différentes   sorties   passives précédemment caractérisées.  Enfin, nous  appliquons un  schéma PID-PBC  récemment proposé dans la littérature à un système mécanique complexe, à savoir  un pendule inversé ultra flexible, représenté sous la  forme  d'un  modèle contraint   EL.  La  conception du  contrôleur, la  preuve de  stabilité,  ainsi  que  les simulations et  les  résultats expérimentaux sont  présentés pour  montrer  l'applicabilité  de  cette  technique aux systèmes physiques.

Mots-clés : systèmes Hamiltonien  à ports, énergie, passivité, stabilisation

Jury :

M.   Roméo  ORTEGA-MARTINEZ CNRS Directeur de thèse

M. Gerardo René ESPINOSA PEREZ Facultad de Ingeniería, Universidad Nacional Autónoma De México Rapporteur

M. Frédéric MAZENC INRIA Examinateur

Mme Elena PANTELEY CNRS Examinateur

M. Arjan VAN DER SCHAFT Johann Bernoulli Institute of Mathematics and Computer Science of the University of Groningen. Rapporteur

M. Yann LE GORREC FEMTO-ST Examinateur

Commande en formation de véhicules autonomes.

Mohamed MAGHENEM
Thesis defended on July 05, 2017, 9:30 AM at CentraleSupelec (Gif-sur-Yvette) Amphi Mesny

Dans cette thèse, des méthodes dites de Lyapunov sont proposées afin de résoudre des problèmes liés à la coordination distribuée des systèmes multiagent, plus précisément, un groupe de systèmes (agents) non-linéaires formés de robots mobiles non-holonomes est considéré. Pour ce groupe de systèmes, des lois de commande distribuée sont proposées dans le but de résoudre des problèmes de type leader-suiveur en formation et aussi des problèmes de type formation sans-leader par une approche de consensus, sous différentes hypothèses sur le graphe de communication et surtout sur les vitesses du leader. L'originalité de ce travail est dans l'approche proposée pour l'étude de stabilité de la boucle fermée, cette approche consiste à transformer les deux derniers problèmes en des problèmes de stabilisation globale asymptotique d'un ensemble invariant. L’analyse de stabilité est basée sur la construction de fonction de Lyapunov et de fonction de Lyapunov-Karasovskii strictes pour des classes de systèmes non-linéaires variant dans le temps présentant des retards bornés et variant dans le temps.

Mots-clés : Lyapunov functions, Mobile robots, Adaptive systems, Excitation permanente.

Composition du jury proposé :

M. Antonio   LORIA

CNRS

Directeur de thèse

Mme Elena   PANTELEY

CNRS

Codirecteur de thèse

M. Frédéric MAZENC

INRIA

Examinateur

M. Dragan NESIC

University of Melbourne

Examinateur

M. Lorenzo MARCONI

University of Bologna

Examinateur

M. Jamal   DAAFOUZ

Université   de Lorraine

Rapporteur

 

Algorithmes de conception de lois de commande prédictives pour les systèmes de production d’énergie

Van Quang Binh NGO
Thesis defended on June 22, 2017, 10:30 AM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-05

This thesis aims to elaborate new control strategies based on Model Predictive control for wind energy generation system. We addressed the topology of doubly fed induction generator (DFIG) based wind generation systems which is suitable for generation platform power in the range in 1.5-6 MW. Furthermore, from the technological point of view, the three-level neutral-point clamped (3L-NPC) inverter configuration is considered a good solution for high power due to its advantages: capability to reduce the harmonic distortion of the output voltage and current, and increase the capacity of the converter thanks to a decreased voltage applied to each power semiconductor.

In this thesis, we presented a detailed description of finite control set model predictive control (FCS-MPC) with two step horizon for two control schemes: grid and DFIG connected 3L-NPC inverter. The principle of the proposed control scheme is to use system model to predict the behavior of the system for every switching states of the inverter. Then, the optimal switching state that minimizes an appropriate predefined cost function is selected and applied directly to the inverter.

The study of issues such as delay compensation, computational burden and selection of weighting factor are also addressed in this thesis. In addition, the stability problem of FCS-MPC is solved by considering the control Lyapunov function in the design procedure. The latter study is focused on the compensation of dead-time effect of power converter.

Jury:

M. Gonzalo ABAD BIAIN, Professeur, Université de Mondragon, Rapporteur

M. Islam BOUSSAADA, Enseignant-Chercheur, IPSA, HDR L2S, Examinateur

M. Dimitri LEFEBVRE, Professeur, Université du Havre, Rapporteur

M. Pierre LEFRAN, Maître de conférence , Université Grenoble-Alpes, Examinateur

M. Silviu NICULESCU, Directeur du Laboratoire des Signaux et Systèmes, L2S, Co-encadrant

M. Sorin OLARU, Professeur, Centralesupélec/L2S,  Co-encadrant

M. Ahmed RACHID, Professeur, université de Picardie Jules Vernes, Examinateur

M. Pedro RODRIGUEZ-AYERBE, Professeur, Centralesupélec /L2S, Directeur de thèse

Commande prédictive tolérante aux défauts pour des systèmes dynamiques Multi-Agent

Minh Tri NGUYEN
Thesis defended on October 10, 2016, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

Cette thèse porte sur des techniques de commande à base d’optimisation, la détection et l’isolation des défauts dans le cadre des systèmes dynamiques Multi-Agents sous contraintes, plus particulièrement liées à l’évitement des collisions. Dans un contexte ensembliste, l’évitement des collisions au sein de la formation se traduit par des conditions de non intersection des régions de sécurité caractéristiques à chaque agent/obstacle. Grace à sa capacité à gérer les contraintes, la commande prédictive a été choisie parmi les méthodes de synthèse à base de techniques d’optimisation.

Tout d’abord, une structure de type leader-suiveur est considérée comme une architecture décentralisée élémentaire. La zone de fonctionnement de chaque suiveur est décidée par le leader et puis une loi de commande locale est calculée afin de garantir que les suiveurs restent à l’intérieur de la zone autorisée, permettant d’éviter les collisions.

Ensuite, un déploiement des agents fondé sur l’approche de commande prédictive décentralisée, utilisant des partitions dynamiques de Voronoi, est proposé, permettant de ramener chaque agent vers l’intérieur de sa cellule Voronoi. Une des contributions a été de considérer le centre de Chebyshev comme cible à l’intérieur de chaque cellule. D’autres solutions proposent l’utilisation du centre de masse ou du centre obtenu par l’interpolation des sommets.

Finalement, des méthodes ensemblistes sont utilisées pour construire un niveau supplémentaire de détection de défauts dans le cadre du système Multi-Agent. Cela permet l’exclusion des agents défectueux ainsi que l’intégration des agents extérieurs certifiés sans défauts dans la formation. La nouvelle formation contenant des agents non défectueux est mise à jours en utilisant par exemple des techniques de commande prédictive centralisée.

 

Membres du jury :

M. George BITSORIS                           Université de Patras                                                                 Rapporteur

M. Christophe LOUEMBET                 Laboratoire d'analyse et d'architecture des systèmes               Examinateur

M. Hugues MOUNIER                         Laboratoire des Signaux et Systèmes                                       Examinateur

M. Sorin OLARU                                  CentraleSupélec/Laboratoire des Signaux et Systèmes           Co-encadrant

Mme Ionela PRODAN                         Institut Polytechnique de Grenoble                                            Examinateur

Mme Cristina STOICA MANIU           CentraleSupélec/Laboratoire des Signaux et Systèmes             Directeur de thèse

M. Didier THEILLIOL                           Université de Lorraine – CRAN                                                  Rapporteur

Robustification de la commande prédictive non linéaire - Application à des procédés pour le développement durable

Seif Eddine BENATTIA
Thesis defended on September 21, 2016, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

Les dernières années ont permis des développements très rapides, tant au niveau de l'élaboration que de l'application, d'algorithmes de commande prédictive non linéaire (CPNL), avec une gamme relativement large de réalisations industrielles. Un des obstacles les plus significatifs rencontré lors du développement de cette commande est lié aux incertitudes sur le modèle du système.

Dans ce contexte, l'objectif principal de cette thèse est la conception de lois de commande prédictives non linéaires robustes vis-à-vis des incertitudes sur le modèle. Classiquement, cette synthèse peut s'obtenir via la résolution d'un problème d'optimisation min-max. L'idée est alors de minimiser l'erreur de suivi de la trajectoire optimale pour la pire réalisation d'incertitudes possible. Cependant, cette formulation de la commande prédictive robuste induit une complexité qui peut être élevée ainsi qu'une charge de calcul importante, notamment dans le cas de systèmes multivariables, avec un nombre de paramètres incertains élevée. Pour y remédier, la principale approche proposée dans ces travaux consiste à simplifier le problème d'optimisation min-max, via l'analyse de sensibilité du modèle vis-à-vis de ses paramètres afin d'en réduire le temps de calcul.

Dans un premier temps, le critère est linéarisé autour des valeurs nominales des paramètres du modèle. Les variables d'optimisation sont soit les commandes du système soit l'incrément de commande sur l'horizon temporel. Le problème d'optimisation initial est alors transformé soit en un problème convexe, soit en un problème de minimisation unidimensionnel, en fonction des contraintes imposées sur les états et les commandes. Une analyse de la stabilité du système en boucle fermée est également proposée.

En dernier lieu, une structure de commande hiérarchisée combinant la commande prédictive robuste linéarisée et une commande par mode glissant intégral est développée afin d'éliminer toute erreur statique en suivi de trajectoire de référence. L'ensemble des stratégies proposées est appliqué à deux cas d'études de commande de bioréacteurs de culture de microorganismes.

 

Membres du jury :

Estelle COURTIAL :                   Maitre de Conférence, Polytech Orléans, Orléans / Examinatrice

Didier DUMUR :                        Professeur, CentraleSupélec, Gif sur Yvette / Directeur de thèse

Hugues MOUNIER :                 Professeur des Universités, L2S, Gif sur Yvette / Examinateur

Mohammed M’Saad :            Professeur des Universités, ENSI Caen, Caen / Rapporteur

Alain Vande WOUWER :        Professeur, Université de Mons, Mons, Belgique / Rapporteur

Sihem TEBBANI :                      Professeur associé, CentraleSupélec, Gif sur Yvette / Co-encadrante

Stabilité du réseau électrique de distribution. Analyse du point de vue automatique d’un système complexe

Marjorie COSSON
Thesis defended on September 19, 2016, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Ampère

Avec l’arrivée massive de production sur les réseaux de distribution, ces derniers ont vu leur structure et leur fonctionnement profondément modifiés. Parmi les conséquences de ce phénomène, on peut citer l’élévation du plan de tension. Pour tenter de maintenir la qualité de fourniture, les gestionnaires de réseaux de distribution (GRD) ont imaginé plusieurs moyens comme par exemple les régulations de puissance réactive des producteurs en fonction de la tension à leurs bornes : les régulations Q(U). Dans ces travaux, nous nous intéressons à l’impact de ce type de régulations sur la stabilité des départs moyenne tension du réseau électrique de distribution.
Pour tenter d’évaluer leur stabilité, un premier travail de modélisation est mené. Il permet de formuler le système comme un système hybride affine par morceaux et de mettre en évidence le risque d’instabilité dans le cas de départs accueillant des régulations Q(U). Nous soulignons aussi le lien entre la stabilité du système et les paramètres des régulations. Afin d’aider les GRD à choisir ces paramètres, une méthode est mise au point permettant l’étude formelle de la stabilité d’un système hybride affine par morceaux. Celle-ci est construite à partir de la création d’une abstraction discrète du système puis du raffinement du système discret par le biais d’un calcul de bisimulation. Ainsi, nous développons un outil générique permettant, pour un jeu de paramètres donné, d’évaluer la stabilité d’un système hybride affine par morceaux comme par exemple un départ électrique moyenne tension accueillant des régulations Q(U).
La méthode proposée offre des résultats très précis et demande peu d’hypothèses sur le système mais ceci au prix de la complexité des calculs. Afin de simplifier l’étude des départs accueillant de nombreuses régulations, un critère de stabilité est formulé dans le cas particulier de régulations Q(U) identiques dont le filtre de mesure est un filtre passe-bas du premier ordre. Celui-ci permet aux GRD d’adapter le temps de réponse des régulations au cas par cas en fonction des producteurs et du réseau auquel ils sont raccordés. Finalement, nous proposons un réglage de la rapidité des régulations à destination des codes de réseau, c’est-à-dire qui soit valable quels que soient le réseau et les producteurs qu’il raccorde. Par une analyse de la structure du modèle, une majoration du critère au cas par cas est proposée afin d’exprimer un critère valable dans tous les cas. Ces travaux de thèse se concluent par une ouverture vers l’étude de systèmes de plus en plus complexes, incluant notamment l’extension de la méthode aux producteurs raccordés en basse tension, l’étude d’éventuelles interactions entre différentes régulations, la prise en compte d’autres mécanismes de réglage coexistant sur les départs et d’autres structures de filtres de mesure.

 

Membres du jury :

Raphael CAIRE                           Maitre de Conférence, ENSE3, Grenoble / Examinateur

Didier DUMUR                          Professeur, CentraleSupélec, Gif sur Yvette / Directeur de thèse

Bruno FRANCOIS                      Professeur, Ecole Centrale Lille, Lille / Rapporteur

Vincent GABRION                     Ingénieur, EDF R&D, Palaiseau / Co-encadrant

Antoine GIRARD                       Directeur de recherche CNRS, L2S, Gif sur Yvette / Examinateur

Hervé GUEGUEN                       Professeur, CentraleSupélec, Rennes / Co-encadrant de thèse

Frédéric KRATZ                         Professeur des universités, INSA Centre Val de Loire, Bourges / Rapporteur

Gilles MALARANGE                  Ingénieur chef de projet, EDF R&D, Palaiseau / Co-encadrant

Bogdan MARINESCU                Professeur, Ecole Centrale Nantes, Nantes / Examinateur

Cristina STOICA MANIU           Professeur associé, CentraleSupélec, Gif sur Yvette / Co-encadrante de thèse

PI Passivity-Based Control : Application to Physical Systems.

Rafael CISNEROS MONTOYA
Thesis defended on July 13, 2016, 3:00 PM at CentraleSupelec (Gif-sur-Yvette) Salle des séminaires du L2S

One of the best known forms of feeding back a system is through a three-term control law called PID (Proportional-Integral-Derivative) controller. PID controllers are sufficient for many control problems, particularly when process dynamics are not highly nonlinear and the performance requirements are modest. Besides, because of its simple structure, the PID controller is the most adopted control scheme by industry and practitioners. Since, the PI(D) tuning methods are based on the linearization, commissioning a PI(D) to operate around a single operating point is relatively easy, however, the performance will be below par in wide operating regimes. To overcome this drawback the current practice is to re-tune the gains of the controllers based on a linear model of the plant evaluated at various operating points, a procedure known as gain-scheduling. There are several disadvantages of gain-scheduling including the need to switch (or interpolate) the controller gains and the non-trivial definition of the regions in the plants state space where the switching takes place --both problems are exacerbated if the dynamics of the plant is highly nonlinear. This makes impossible to guarantee the system stability.  In this context, the current thesis work is aimed at the designing of PI controllers, based on the passivity theory, such that the stability of the nonlinear model is guarantied in closed-loop. The approach here presented is constructive and motivated by the applicaton to physical systems.

Membres du jury :

M. Stanislav ARANOVSKIY, Maître de conférence, ITMO University, examinateur.
M. Robert GRIÑÓ, Professeur, Polytechnic University of Catalonia, rapporteur.
M. Hugues MOUNIER, Professeur, Laboratoire de Signaux et Systèmes, examinateur.
M. Romeo ORTEGA, Directeur de recherche au CNRS, directeur de thèse.
M. Jacquelien SCHERPEN, Professeur, University of Groningen, rapporteur.

Pages