Traitement du signal et des images

Monsieur Guillaume REVILLON
Thesis defended on April 18, 2019, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi F3-06

dirigés par

Monsieur Charles SOUSSEN

 

Composition du jury:

M. Charles SOUSSEN  CentraleSupélec  Directeur de thèse
Mme Nathalie PEYRARD INRA Toulouse, Unité de Mathématique et Informatique Rapporteur
M. Charles BOUVEYRON Université Côte d'Azur Rapporteur
M. Paul HONEINE Université de Rouen Normandie Examinateur
M. Cyrille ENDERLI Thales DMS Examinateur
M. Arthur TENENHAUS CentraleSupélec Examinateur
M. Jean-François GRANDIN Thales DMS Invité
M. Ali MOHAMMAD-DJAFARI   Invité

 

Résumé : En Guerre Electronique, l’identification des signaux radar est un atout majeur de la prise de décisions tactiques liées au théâtre d’opérations militaires. En fournissant des informations sur la présence de menaces, la classification et le partitionnement des signaux radar ont alors un rôle crucial assurant un choix adapté des contre-mesures dédiées à ces menaces et permettant la détection de signaux radar inconnus pour la mise à jour des bases de données. Les systèmes de Mesures de Soutien Electronique enregistrent la plupart du temps des mélanges de signaux radar provenant de différents émetteurs présents dans l’environnement électromagnétique. Le signal radar, descrit par un motif de modulationsimpulsionnelles, est alors souvent partiellement observé du fait de mesures manquantes et aberrantes Le processus d’identification se fonde sur l’analyse statistique des paramètres mesurables du signal radar qui le caractérisent tant quantitativement que qualitativement. De nombreuses approches mêlant des techniques de fusion de données et d’apprentissage statistique ont été développées. Cependant, ces algorithmes ne peuvent pas gérer les données manquantes et des méthodes de substitution de données sont requises afin d’utiliser ces derniers. L’objectif principal de cette thèse est alors de définir un modèle de classification et partitionnement intégrant la gestion des valeurs aberrantes et manquantes présentes dans tout type de données. Une approche fondée sur les modèles de mélange de lois de probabilités est proposée dans cette thèse. Les modèles de mélange fournissent un formalisme mathématique flexible favorisant l’introduction de variables latentes permettant la gestion des données aberrantes et la modélisation des données manquantes dans les problèmes de classification et de partionnement. L’apprentissage du modèle ainsi que la classification et le partitionnement sont réalisés dans un cadre d’inférence bayésienne où une méthode d’approximation variationnelle est introduite afin d’estimer la loi jointe a posteriori des variables latentes et des paramètres. Des expériences sur diverses données montrent que la méthode proposée fournit de meilleurs résultats que les algorithmes standards.

Mots-clés : Traitement du signal en radar,méthodes bayésiennes,Incertitude

Vous êtes cordialement conviés au pot qui suivra