Panneaux complexes anisotropes et imagerie électromagnétique rapide.

Giacomo RODEGHIERO
Thesis defended on September 29, 2015, 2:00 PM at CentraleSupelec (Gif-sur-Yvette) Amphi Ampère

Non-Destructive Testing/Evaluation (NdT/E) of multi-layered composite materials for problems of quality, viability, safety and availability of systems involving manufactured parts (in aeronautics and in automotive industry, as a good example) has become an interesting and challenging task nowadays. The focus of the PhD thesis is on the electromagnetic (EM) imaging of complex anisotropic multi-slab composite panels as increasingly encountered in applications, yet source of strong challenges at modeling stage and even more at often-in-infancy imaging stage. From eddy-currents to microwaves, there is a strong need to make available modeling and imaging procedures that are robust, fast, accurate and useful to potential end-users' decision about potential defects both at low-frequency (LF) (conductive materials, carbon-fiber like) and high-frequency (HF) (dielectric materials, glass-fiber like). Moreover, it is important to get the results in close-to-real-time. However, this requires an accurate response to external sources of the multilayers, considering the layers which these composite structures are made of as undamaged or damaged. The modeling at forward stage is managed via a first-order solution involving the dyadic Green's functions (DGF) of the layers along with the depolarization tensor of the assumed defects when they are small enough vis-à-vis the skin depth (LF case) or the wavelength (HF case). The accuracy of the DGF has to be ensured even if the sources lie far away from the origin, which yields a fast-oscillating spectrum of the dyads. The Padua-Domínguez interpolation-integration technique is introduced herein in order to evaluate in an effective fashion fast-oscillating integrals.

Damages or disorders, which these composite structures may suffer from, are of many kinds. One could mention voids, fluid-filled cavities or uniaxial defects with obvious impacts on the electromagnetic and geometric parameters of the multilayers. That is, the task to make available to end-users imaging algorithms tailored to detect the presence of defects. The well-known standard MUltiple SIgnal Classification (MUSIC) algorithm, which is based on the Singular Value Decomposition (SVD) of such DGF, is here applied to localize the positions of small multiple defects with weak interaction embedded in anisotropic uniaxial media. The main drawback of MUSIC is its sensitivity with respect to the noise. Therefore, MUSIC with enhanced resolution and Recursively Applied and Projected (RAP) MUSIC are introduced to overcome such a drawback of the standard algorithm and to provide quality results with better resolution.

Jury :

H. Haddar, Directeur de recherche INRIA, DEFI-CMAP, Palaiseau, rapporteur,
A. Tamburrino, Professeur, Università degli Studi di Cassino e del Lazio Meridionale, Cassino, rapporteur,
M. Bonnet, Directeur de recherche CNRS, POems, Unité de Mathématiques Appliquées, Palaiseau, examinateur,
J.-P. Groby, Chargé de recherche CNRS, Laboratoire d'Acoustique de l'Université du Maine, Le Mans, examinateur,
C. Reboud, Ingénieur-chercheur, CEA LIST, Département Imagerie Simulation pour le Contrôle, Saclay, examinateur,
D. Lesselier, Directeur de recherche CNRS, L2S, Gif-sur-Yvette, Directeur de thèse.