Motivated by applications to motion planning and image segmentation, we consider shortest paths models with a curvature penalization, such as the Euler/Mumford elasticas, or the Reed-Shepp car with or without reverse gear. Our numerical strategy, for computing the path of minimal energy joining two given points, involves approximating these singular models using strongly anisotropic Riemannian or Finslerian metrics on the product space R^d x S^{d-1}. The associated eikonal equations are then solved via specialized variants of the Fast-Marching algorithm.

Bio. Jean-Marie Mirebeau est chargé de recherches au Laboratoire de mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay. Ses travaux portent sur la résolution numérique des équations aux dérivées partielles, et en particulier sur les difficultés liées aux fortes anisotropies. C'est à dire à l'existence de directions privilégiées par le modèle, non alignées avec les axes de coordonnées. La conception de schémas pour ces modèles requiert des outils mathématiques peu communs en analyse, souvent issus de l'arithmétique et de la géométrie discrète. Son activité englobe l'étude théorique de la convergence et de la complexité des schémas numériques, leur implémentation et leur distribution en license libre, et le suivi de leur application via des collaborations académiques et industrielles. Jean-Marie Mirebeau a reçu le prix Popov 2016 pour ses contributions en théorie de l'approximation. Il était antérieurement affecté au laboratoire Ceremade de l'Université Paris-Dauphine, et a effectué sa thèse sous la direction d'Albert Cohen à l'Université Pierre et Marie Curie.