Robustesse de la commande prédictive explicite

Rajesh KODURI
Soutenance de thèse de doctorat le 28 Octobre 2017, 13h00 à CentraleSupelec (Gif-sur-Yvette) Amphi Mesny

Composition du jury proposé

M. Pedro RODRIGUEZ-AYERBE    CentraleSupélec   Directeur de these

Mme Alexandra  GRANCHAROVA  University of Chemical Technology and Metallurgy, Bulgaria  Rapporteur

M. Sorin OLARU  CentraleSupélec  CoDirecteur de these

M. Georges  BITSORIS  University of Patras  Rapporteur

M. Mounier HUGUES  CentraleSupélec  Examinateur

M. Carlos Eduardo Trabuco DOREA  Universidade Federal do Rio Grande do Norte  Examinateur

M. Shyam  KAMAL  Indian Institute of Technology, BHU  Examinateur

Mots-clés :

Robustesse,prédictive,commande,explicite,

Résumé : 

Les techniques de conception de lois de commande pour les systèmes linéaires ou hybrides avec contraintes conduisent souvent à des partitions de l'espace d'état avec des régions polyédriques convexes. Ceci correspond à des lois de commande par retour d'état affine (PWA) par morceaux associées à une partition polyédrale de l'espace d'état. De telles lois de commande peuvent être effectivement mises en œuvre sur des plateformes matérielles pour des applications de commande en temps réel. Cependant, la robustesse des solutions explicites dépend de la précision du modèle mathématique des systèmes dynamiques. Les incertitudes dans le modèle du système posent de sérieux défis en ce qui concerne la stabilité et la mise en œuvre des lois de commande affines par morceaux. Motivé par les défis auxquels font face les solutions explicites par rapport aux incertitudes dans les modèles des systèmes dynamiques, cette thèse est principalement axée sur leur analyse et à leur retouche. La première partie de cette thèse vise à calculer les marges de robustesse pour une loi de commande PWA nominale donnée obtenue pour un système de temps discret linéaire. Les marges de robustesse classiques, c'est-à-dire la marge de gain et la marge de phase, considèrent la variation de gain et la variation de phase du modèle pour lequel la stabilité de la boucle fermée est préservée. La deuxième partie de la thèse vise à considérer des perturbations dans la représentation des sommets des régions polyédriques. Les partitions de l’espace d'état quantifiées perdent une partie des propriétés importantes des contrôleurs explicites: « non-chevauchement », « convexité » et/ou « invariance ». Deux ensembles différents appelés sensibilité aux sommets et marge de sensibilité sont déterminés pour caractériser les perturbations admissibles, en préservant respectivement la propriété de non-chevauchement et d'invariance du contrôleur. La troisième partie vise à analyser la complexité des solutions explicites en termes de temps de calcul et de mémoire. Une première comparaison entre les évaluations séquentielles et parallèles des fonctions PWA par l'algorithme ADMM (Alternating Direction Method of Multiplier) est faite. Ensuite, la complexité computationnelle des évaluations parallèles des fonctions PWA pour l'algorithme de couverture progressive (PHA) sur l'unité centrale de traitement (CPU) et l'unité de traitement graphique (GPU) est comparée.