Consensus variant dans le temps : application à la formation de véhicules

Nohemi ALVAREZ JARQUIN
Soutenance de thèse de doctorat le 11 Juin 2015, 10h30 à CentraleSupelec (Gif-sur-Yvette) Amphi F3-05

Les multiples applications liées aux systèmes multi-agents en réseau, tels que les satellites en formation, les oscillateurs couplés, les véhicules aériens sans pilote, entre autres, ont été, sans aucun doute, une motivation majeure dans le développement de cette thèse, qui est consacrée à l’étude du consensus de systèmes dynamiques et à la commande en formation de robots mobiles non holonomes.

Dans le contexte du consensus, nous étudions la topologie en anneau avec de liens de communication variant dans le temps. Notamment, la communication peut être perdue pendant de longs intervalles de temps. Nous donnons de conditions suffisantes pour le consensus qui restent simples à vérifier, par exemple, en utilisant le théorème du petite gain. En suite, nous abordons le problème de consensus en supposant que la topologie de communication est variable. Nous établissons que le consensus est atteint à condition qu’il existe toujours un chemin de communication du type « spanning-tree » pendant un temps de séjour minimal. L'analyse s'appuie sur la théorie de stabilité des systèmes variant dans le temps et les systèmes à commutation.

Dans le contexte de la commande en formation de véhicules autonomes nous adressons le problème de commande en suivi de trajectoire sur ligne droite en suivant une approche type maître-esclave. Nous montrons que le suivi global peut être obtenu à partir d’un contrôleur qui possède la propriété d’excitation persistante. En gros, le mécanisme de stabilisation dépend de l’excitation du système par une quantité qui est proportionnelle à l’erreur de suivi. Ensuite, la méthode est utilisée pour résoudre le problème de suivi de formation de plusieurs véhicules interconnectés sur la base d’une topologie « spanning-tree ». Nous donnons des conditions de stabilité concernant les modèles cinématique et dynamique, en utilisant la seconde méthode de Lyapunov.

 

Composition du jury

Antonio LORIA  Directeur de recherche CNRS, Laboratoire des signaux et systèmes (L2S)  Directeur de thèse

Hamel TAREK  Professeur, Laboratoire d'informatique de signaux et systèmes  Rapporteur

Nicolas MARCHAND  Directeur de recherche CNRS, Laboratoire GIPSA-lab  Rapporteur

Pascal MORIN Professeur INRIA, Institut des systèmes intelligents et de robotique  Examinateur

Véronique VÈQUE  Professeur des universités, Université Paris-Sud, Laboratoire des signaux et systèmes (L2S)  Examinateur