Speaker: 
José SAAVEDRA
Date: 
Fri, 10/19/2012 -
15:00 to 17:00
Lieu: 
Supélec, Amphi. F.3.06
Résumé/Abstract: 
The OFDM (Orthogonal Frequency Division Multiplexing) system uses multiple sub-carriers for data transmission. Compared to the single-carrier scheme, the OFDM technique allows optimal settings for high data rate transmission over a requency selective channel (from the Shannon’s capacity point of view). We can, by this way, ensure reliable communication and efficient energy use.

Membres du jury

Mme. MOKRAOUI Anissa, Maitre de conférences Université Paris 13, rapporteur
M. CANCES Jean-Pierre, Professeur Université de Limoges, rapporteur
M. GELLER Benoit, Professeur ENSTA ParisTech, examinateur
Mme VEQUE Véronique, Professeur Université de Paris Sud, examinateur
M. BUSSON Anthony, Professeur ENS de Lyon, co-encadrant
M. DUHAMEL Pierre, Directeur de recherches CNRS, directeur de thèse

 

Le système OFDM (Orthogonal Frequency Division Multiplexing) utilise plusieurs sous-porteuses pour transmettre de l'information. Comparé à un schéma mono-porteuse, la modulation multi-porteuses OFDM permet d'obtenir facilement des réglages optimaux (au sens de la capacité de Shannon) pour une transmission à haut débit sur un canal sélectif en fréquence. En ce sens, on peut alors garantir une transmission fiable et une meilleure gestion de l'énergie utilisée. Lors de la transmission avec une modulation OFDM, les sous-porteuses utilisent des canaux différents qui n'ont pas forcement la même atténuation. Allouer le même niveau de puissance à chaque sous-porteuse ne garantit pas une capacité optimale dans une liaison point à point. Une allocation dynamique de la puissance (c'est-à-dire attribuer différents niveaux de puissance aux sous-porteuses en fonction du canal) donne de meilleures performances. Par contre, dans une situation de diffusion (broadcast), l'émetteur ne connaît pas les canaux vers tous les utilisateurs, et la meilleure stratégie consiste à émettre avec la même puissance sur toutes les sous-porteuses. Cette thèse a pour objectif d'explorer les situations intermédiaires, et de proposer les outils d'allocation de puissance appropriés. Cette situation intermédiaire est appelée " multicast ", ou " multidiffusion " : l'émetteur envoie les signaux vers un nombre fini (pas trop grand) d'utilisateurs, dont il connaît les paramètres de canaux, et il peut adapter son émission à cette connaissance des canaux. On est donc dans une situation intermédiaire entre le " point à point " et la " diffusion ". L'objectif final de ce travail est d'évaluer le gain apporté par la connaissance des canaux en situation de multicast par rapport à la même communication effectuée comme si on était en diffusion. Bien évidemment, quand le nombre de destinataires est très grand, les gains seront négligeables, car le signal rencontre un nombre très élevé de canaux, et une allocation de puissance uniforme sera quasi optimale. Quand le nombre est très faible, on sera proche du point à point et les gains devraient être sensibles. Nous proposons des outils pour quantifier ces améliorations dans les cas de systèmes ayant une antenne à l'émission et une antenne à la réception, dit SISO (Single Input Single Output) et de systèmes avec plusieurs antennes, dits MIMO (Multiple Input Multiple Output). Les étapes nécessaires pour réaliser ce travail sont : 1) En supposant une connaissance préalable de l'état des canaux (entre station de base et terminaux), mettre en œuvre les outils de la théorie de l'information pour effectuer l'allocation de puissance et évaluer les capacités des systèmes étudiés. 2) Pour le système multi-utilisateur SISO-OFDM, nous proposons un algorithme d'allocat

on de puissance sur chaque sous porteuse dans une situation de multicast. 3) Pour le système multi-utilisateur MIMO-OFDM, nous proposons un algorithme qui exploite les caractéristiques du précodage "zero forcing". L'objectif est alors de partager la puissance disponible entre toutes les sous-porteuses et toutes les antennes. 4) Enfin, dans une dernière étape nous nous intéressons à une conception efficace de la situation de diffusion, afin de déterminer à l'aide d'outils de géométrie stochastique quelle zone peut être couverte afin qu'un pourcentage donné d'utilisateurs reçoivent une quantité d'information déterminée à l'avance. Ceci permet de déterminer la zone de couverture sans mettre en œuvre des simulations intensives. La combinaison de ces outils permet un choix efficace des situations qui relèvent de la " diffusion ", du " multicast " et du " point à point ".